




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福州市2025屆高三第二次五校聯考數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數是定義在上的奇函數,函數滿足,且時,,則()A.2 B. C.1 D.2.若單位向量,夾角為,,且,則實數()A.-1 B.2 C.0或-1 D.2或-13.已知是平面內互不相等的兩個非零向量,且與的夾角為,則的取值范圍是()A. B. C. D.4.設,,是非零向量.若,則()A. B. C. D.5.體育教師指導4個學生訓練轉身動作,預備時,4個學生全部面朝正南方向站成一排.訓練時,每次都讓3個學生“向后轉”,若4個學生全部轉到面朝正北方向,則至少需要“向后轉”的次數是()A.3 B.4 C.5 D.66.一個幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B. C. D.847.若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積是()A.36cm3 B.48cm3 C.60cm3 D.72cm38.()A. B. C. D.9.設,滿足,則的取值范圍是()A. B. C. D.10.設實數x,y滿足條件x+y-2?02x-y+3?0x-y?0則A.1 B.2 C.3 D.411.已知拋物線的焦點為,為拋物線上一點,,當周長最小時,所在直線的斜率為()A. B. C. D.12.已知命題:R,;命題:R,,則下列命題中為真命題的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數在內有兩個零點,則實數的取值范圍是________.14.已知直線被圓截得的弦長為2,則的值為__15.如圖,是一個四棱錐的平面展開圖,其中間是邊長為的正方形,上面三角形是等邊三角形,左、右三角形是等腰直角三角形,則此四棱錐的體積為_____.16.已知實數滿約束條件,則的最大值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)求不等式的解集;(2)若不等式在上恒成立,求實數的取值范圍.18.(12分)已知函數.(1)當時,判斷在上的單調性并加以證明;(2)若,,求的取值范圍.19.(12分)已知橢圓C:()的左、右焦點分別為,,離心率為,且過點.(1)求橢圓C的方程;(2)過左焦點的直線l與橢圓C交于不同的A,B兩點,若,求直線l的斜率k.20.(12分)如圖,在四棱錐中,四邊形為正方形,平面,點是棱的中點,,.(1)若,證明:平面平面;(2)若三棱錐的體積為,求二面角的余弦值.21.(12分)已知橢圓,上頂點為,離心率為,直線交軸于點,交橢圓于,兩點,直線,分別交軸于點,.(Ⅰ)求橢圓的方程;(Ⅱ)求證:為定值.22.(10分)如圖,在四棱錐中,,,,和均為邊長為的等邊三角形.(1)求證:平面平面;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
說明函數是周期函數,由周期性把自變量的值變小,再結合奇偶性計算函數值.【詳解】由知函數的周期為4,又是奇函數,,又,∴,∴.故選:D.【點睛】本題考查函數的奇偶性與周期性,掌握周期性與奇偶性的概念是解題基礎.2.D【解析】
利用向量模的運算列方程,結合向量數量積的運算,求得實數的值.【詳解】由于,所以,即,,即,解得或.故選:D【點睛】本小題主要考查向量模的運算,考查向量數量積的運算,屬于基礎題.3.C【解析】試題分析:如下圖所示,則,因為與的夾角為,即,所以,設,則,在三角形中,由正弦定理得,所以,所以,故選C.考點:1.向量加減法的幾何意義;2.正弦定理;3.正弦函數性質.4.D【解析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點:平面向量數量積.【思路點睛】幾何圖形中向量的數量積問題是近幾年高考的又一熱點,作為一類既能考查向量的線性運算、坐標運算、數量積及平面幾何知識,又能考查學生的數形結合能力及轉化與化歸能力的問題,實有其合理之處.解決此類問題的常用方法是:①利用已知條件,結合平面幾何知識及向量數量積的基本概念直接求解(較易);②將條件通過向量的線性運算進行轉化,再利用①求解(較難);③建系,借助向量的坐標運算,此法對解含垂直關系的問題往往有很好效果.5.B【解析】
通過列舉法,列舉出同學的朝向,然后即可求出需要向后轉的次數.【詳解】“正面朝南”“正面朝北”分別用“∧”“∨”表示,利用列舉法,可得下表,原始狀態第1次“向后轉”第2次“向后轉”第3次“向后轉”第4次“向后轉”∧∧∧∧∧∨∨∨∨∨∧∧∧∧∧∨∨∨∨∨可知需要的次數為4次.故選:B.【點睛】本題考查的是求最小推理次數,一般這類題型構造較為巧妙,可通過列舉的方法直觀感受,屬于基礎題.6.B【解析】
畫出幾何體的直觀圖,計算表面積得到答案.【詳解】該幾何體的直觀圖如圖所示:故.故選:.【點睛】本題考查了根據三視圖求表面積,意在考查學生的計算能力和空間想象能力.7.B【解析】試題分析:該幾何體上面是長方體,下面是四棱柱;長方體的體積,四棱柱的底面是梯形,體積為,因此總的體積.考點:三視圖和幾何體的體積.8.B【解析】
利用復數代數形式的乘除運算化簡得答案.【詳解】.故選B.【點睛】本題考查復數代數形式的乘除運算,考查了復數的基本概念,是基礎題.9.C【解析】
首先繪制出可行域,再繪制出目標函數,根據可行域范圍求出目標函數中的取值范圍.【詳解】由題知,滿足,可行域如下圖所示,可知目標函數在點處取得最小值,故目標函數的最小值為,故的取值范圍是.故選:D.【點睛】本題主要考查了線性規劃中目標函數的取值范圍的問題,屬于基礎題.10.C【解析】
畫出可行域和目標函數,根據目標函數的幾何意義平移得到答案.【詳解】如圖所示:畫出可行域和目標函數,z=x+y+1,即y=-x+z-1,z表示直線在y軸的截距加上1,根據圖像知,當x+y=2時,且x∈-13,1時,故選:C.【點睛】本題考查了線性規劃問題,畫出圖像是解題的關鍵.11.A【解析】
本道題繪圖發現三角形周長最小時A,P位于同一水平線上,計算點P的坐標,計算斜率,即可.【詳解】結合題意,繪制圖像要計算三角形PAF周長最小值,即計算PA+PF最小值,結合拋物線性質可知,PF=PN,所以,故當點P運動到M點處,三角形周長最小,故此時M的坐標為,所以斜率為,故選A.【點睛】本道題考查了拋物線的基本性質,難度中等.12.B【解析】
根據,可知命題的真假,然后對取值,可得命題的真假,最后根據真值表,可得結果.【詳解】對命題:可知,所以R,故命題為假命題命題:取,可知所以R,故命題為真命題所以為真命題故選:B【點睛】本題主要考查對命題真假的判斷以及真值表的應用,識記真值表,屬基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
設,,設,函數為奇函數,,函數單調遞增,,畫出簡圖,如圖所示,根據,解得答案.【詳解】,設,,則.原函數等價于函數,即有兩個解.設,則,函數為奇函數.,函數單調遞增,,,.當時,易知不成立;當時,根據對稱性,考慮時的情況,,畫出簡圖,如圖所示,根據圖像知:故,即,根據對稱性知:.故答案為:.【點睛】本題考查了函數零點問題,意在考查學生的轉化能力和計算能力,畫出圖像是解題的關鍵.14.1【解析】
根據弦長為半徑的兩倍,得直線經過圓心,將圓心坐標代入直線方程可解得.【詳解】解:圓的圓心為(1,1),半徑,
因為直線被圓截得的弦長為2,
所以直線經過圓心(1,1),
,解得.故答案為:1.【點睛】本題考查了直線與圓相交的性質,屬基礎題.15.【解析】
畫圖直觀圖可得該幾何體為棱錐,再計算高求解體積即可.【詳解】解:如圖,是一個四棱錐的平面展開圖,其中間是邊長為的正方形,上面三角形是等邊三角形,左、右三角形是等腰直角三角形,此四棱錐中,是邊長為的正方形,是邊長為的等邊三角形,故,又,故平面平面,的高是四棱錐的高,此四棱錐的體積為:.故答案為:.【點睛】本題主要考查了四棱錐中的長度計算以及垂直的判定和體積計算等,需要根據題意16.8【解析】
畫出可行域和目標函數,根據平移計算得到答案.【詳解】根據約束條件,畫出可行域,圖中陰影部分為可行域.又目標函數表示直線在軸上的截距,由圖可知當經過點時截距最大,故的最大值為8.故答案為:.【點睛】本題考查了線性規劃問題,畫出圖像是解題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】
(1)分類討論去絕對值號,即可求解;(2)原不等式可轉化為在R上恒成立,分別求函數與的最小值,根據能同時成立,可得的最小值,即可求解.【詳解】(1)①當時,不等式可化為,得,無解;②當-2≤x≤1時,不等式可化為得x>0,故0<x≤1;③當x>1時,不等式可化為,得x<2,故1<x<2.綜上,不等式的解集為(2)由題意知在R上恒成立,所以令,則當時,又當時,取得最小值,且又所以當時,與同時取得最小值.所以所以,即實數的取值范圍為【點睛】本題主要考查了含絕對值不等式的解法,分類討論,函數的最值,屬于中檔題.18.(1)在為增函數;證明見解析(2)【解析】
(1)令,求出,可推得,故在為增函數;(2)令,則,由此利用分類討論思想和導數性質求出實數的取值范圍.【詳解】(1)當時,.記,則,當時,,.所以,所以在單調遞增,所以.因為,所以,所以在為增函數.(2)由題意,得,記,則,令,則,當時,,,所以,所以在為增函數,即在單調遞增,所以.①當,,恒成立,所以為增函數,即在單調遞增,又,所以,所以在為增函數,所以所以滿足題意.②當,,令,,因為,所以,故在單調遞增,故,即.故,又在單調遞增,由零點存在性定理知,存在唯一實數,,當時,,單調遞減,即單調遞減,所以,此時在為減函數,所以,不合題意,應舍去.綜上所述,的取值范圍是.【點睛】本題主要考查了導數的綜合應用,利用導數研究函數的單調性、最值和零點及不等式恒成立等問題,考查化歸與轉化思想、分類與整合思想、函數與方程思想,考查了學生的邏輯推理和運算求解能力,屬于難題.19.(1)(2)直線l的斜率為或【解析】
(1)根據已知列出方程組即可解得橢圓方程;(2)設直線方程,與橢圓方程聯立,轉化為,借助向量的數量積的坐標表示,及韋達定理即可求得結果.【詳解】(1)由題意得解得故橢圓C的方程為.(2)直線l的方程為,設,,則由方程組消去y得,,所以,,由,得,所以,又所以,即所以,因此,直線l的斜率為或.【點睛】本題考查橢圓的標準方程,考查直線和橢圓的位置關系,考查學生的計算求解能力,難度一般.20.(1)見解析(2)【解析】
(1)由已知可證得平面,則有,在中,由已知可得,即可證得平面,進而證得結論.(2)過作交于,由為的中點,結合已知有平面.則,可求得.建立坐標系分別求得面的法向量,平面的一個法向量為,利用公式即可求得結果.【詳解】(1)證明:平面,平面,,又四邊形為正方形,.又、平面,且,平面..中,,為的中點,.又、平面,,平面.平面,平面平面.(2)解:過作交于,如圖為的中點,,.又平面,平面.,.所以,又、、兩兩互相垂直,以、、為坐標軸建立如圖所示的空間直角坐標系.,,,設平面的法向量,則,即.令,則,..平面的一個法向量為.二面角的余弦值為.【點睛】本題考查面面垂直的證明方法,考查了空間線線、線面、面面位置關系,考查利用向量法求二面角的方法,難度一般.21.(Ⅰ);(Ⅱ),證明見解析.【解析】
(Ⅰ)根據題意列出關于,,的方程組,解出,,的值,即可得到橢圓的方程;(Ⅱ)設點,,點,,易求直線的方程為:,令得,,同理可得,所以,聯立直線與橢圓方程,利用韋達定理代入上式,化簡即可得到.【詳解】(Ⅰ)解:由題意可知:,解得,橢圓的方程為:;(Ⅱ)證:設點,,點,,聯立方程,消去得:,,①,點,,,直線的方程為:,令得,,,,同理可得,,,把①式代入上式得:,為定值.【點睛】本題主要考查直線與橢圓的位置關系、定值問題的求解;關鍵是能夠通過直線與橢圓聯立得到韋達定理的形式,利用韋達定理化簡三角形面積得到定值;考查計算能力與推理能力,屬于中檔題.22.(1)見證明;(2)【解析】
(1)取的中點,連接,要證平面平面,轉證平面,即證,即可;(2)以為坐標原點,以為軸正方向,建立如圖所示的空間直角坐標系,分別求出平面與平面的法向量,代入公式,即可得到結果.【詳解】(1)取的中點,連接,因為均為邊長為的等邊三角形,所以,,且因為,所以,所以,又因為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 酒水連鎖知識培訓課件
- 中班藝術領域教學方案2025年歸納
- 籃球技戰術課件
- 雙下肢血管炎護理查房
- 急性腎炎正確護理方法
- 護士長時間管理和目標管理
- 河北軟件職業技術學院《獸醫臨床病理學》2023-2024學年第二學期期末試卷
- 江蘇聯合職業技術學院《電子設計與創新基礎A》2023-2024學年第二學期期末試卷
- 上海震旦職業學院《BM概論》2023-2024學年第一學期期末試卷
- 2025屆山東省青島李滄區四校聯考初三第一次診斷性考試試題化學試題試卷含解析
- 河北青縣村村合并方案
- 國家職業技術技能標準 6-29-02-06 鑿巖工(試行) 2024年版
- 《宮頸癌的健康教育》課件
- 城鎮燃氣安全管理培訓課件
- 園區能源管理系統建設方案合集
- 《創新思維方法》課件
- 鋼筋混凝土護坡工程施工
- 電動起重機司機裝卸司機
- 疤痕妊娠的護理查房
- 【自考復習資料】05339環境心理學(知識點歸納)
- 區塊鏈原理與實踐- 課件 第10章以太坊
評論
0/150
提交評論