




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
云南省玉溪市元江縣第一中學2025屆第二學期高三期末考試數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設集合,則()A. B.C. D.2.已知拋物線:()的焦點為,為該拋物線上一點,以為圓心的圓與的準線相切于點,,則拋物線方程為()A. B. C. D.3.若表示不超過的最大整數(如,,),已知,,,則()A.2 B.5 C.7 D.84.數列滿足,且,,則()A. B.9 C. D.75.設,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件6.若執行如圖所示的程序框圖,則輸出的值是()A. B. C. D.47.已知為等腰直角三角形,,,為所在平面內一點,且,則()A. B. C. D.8.為比較甲、乙兩名高中學生的數學素養,對課程標準中規定的數學六大素養進行指標測驗(指標值滿分為100分,分值高者為優),根據測驗情況繪制了如圖所示的六大素養指標雷達圖,則下面敘述不正確的是()A.甲的數據分析素養優于乙 B.乙的數據分析素養優于數學建模素養C.甲的六大素養整體水平優于乙 D.甲的六大素養中數學運算最強9.函數在的圖象大致為()A. B.C. D.10.過雙曲線的左焦點作傾斜角為的直線,若與軸的交點坐標為,則該雙曲線的標準方程可能為()A. B. C. D.11.在精準扶貧工作中,有6名男干部、5名女干部,從中選出2名男干部、1名女干部組成一個扶貧小組分到某村工作,則不同的選法共有()A.60種 B.70種 C.75種 D.150種12.已知集合,,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,(其中e為自然對數的底數),若關于x的方程恰有5個相異的實根,則實數a的取值范圍為________.14.在數列中,,,曲線在點處的切線經過點,下列四個結論:①;②;③;④數列是等比數列;其中所有正確結論的編號是______.15.將函數的圖象向左平移個單位長度,得到一個偶函數圖象,則________.16.在平面直角坐標系中,雙曲線(,)的左頂點為A,右焦點為F,過F作x軸的垂線交雙曲線于點P,Q.若為直角三角形,則該雙曲線的離心率是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在四棱錐中,底面為正方形,,,,,為的中點,為棱上的一點.(1)證明:面面;(2)當為中點時,求二面角余弦值.18.(12分)已知函數.(1)當時,試求曲線在點處的切線;(2)試討論函數的單調區間.19.(12分)已知函數(1)解不等式;(2)若函數,若對于任意的,都存在,使得成立,求實數的取值范圍.20.(12分)如圖,在四棱錐中,平面,四邊形為正方形,點為線段上的點,過三點的平面與交于點.將①,②,③中的兩個補充到已知條件中,解答下列問題:(1)求平面將四棱錐分成兩部分的體積比;(2)求直線與平面所成角的正弦值.21.(12分)設點,分別是橢圓的左、右焦點,為橢圓上任意一點,且的最小值為1.(1)求橢圓的方程;(2)如圖,動直線與橢圓有且僅有一個公共點,點,是直線上的兩點,且,,求四邊形面積的最大值.22.(10分)已知在ΔABC中,角A,B,C的對邊分別為a,b,c,且cosB(1)求b的值;(2)若cosB+3sin
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
直接進行集合的并集、交集的運算即可.【詳解】解:;∴.故選:B.【點睛】本題主要考查集合描述法、列舉法的定義,以及交集、并集的運算,是基礎題.2、C【解析】
根據拋物線方程求得點的坐標,根據軸、列方程,解方程求得的值.【詳解】不妨設在第一象限,由于在拋物線上,所以,由于以為圓心的圓與的準線相切于點,根據拋物線的定義可知,、軸,且.由于,所以直線的傾斜角為,所以,解得,或(由于,故舍去).所以拋物線的方程為.故選:C【點睛】本小題主要考查拋物線的定義,考查直線的斜率,考查數形結合的數學思想方法,屬于中檔題.3、B【解析】
求出,,,,,,判斷出是一個以周期為6的周期數列,求出即可.【詳解】解:.,∴,,,同理可得:;;.;,,…….∴.故是一個以周期為6的周期數列,則.故選:B.【點睛】本題考查周期數列的判斷和取整函數的應用.4、A【解析】
先由題意可得數列為等差數列,再根據,,可求出公差,即可求出.【詳解】數列滿足,則數列為等差數列,,,,,,,故選:.【點睛】本題主要考查了等差數列的性質和通項公式的求法,意在考查學生對這些知識的理解掌握水平,屬于基礎題.5、B【解析】
先解不等式化簡兩個條件,利用集合法判斷充分必要條件即可【詳解】解不等式可得,解絕對值不等式可得,由于為的子集,據此可知“”是“”的必要不充分條件.故選:B【點睛】本題考查了必要不充分條件的判定,考查了學生數學運算,邏輯推理能力,屬于基礎題.6、D【解析】
模擬程序運行,觀察變量值的變化,得出的變化以4為周期出現,由此可得結論.【詳解】;如此循環下去,當時,,此時不滿足,循環結束,輸出的值是4.故選:D.【點睛】本題考查程序框圖,考查循環結構.解題時模擬程序運行,觀察變量值的變化,確定程序功能,可得結論.7、D【解析】
以AB,AC分別為x軸和y軸建立坐標系,結合向量的坐標運算,可求得點的坐標,進而求得,由平面向量的數量積可得答案.【詳解】如圖建系,則,,,由,易得,則.故選:D【點睛】本題考查平面向量基本定理的運用、數量積的運算,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力.8、D【解析】
根據所給的雷達圖逐個選項分析即可.【詳解】對于A,甲的數據分析素養為100分,乙的數據分析素養為80分,故甲的數據分析素養優于乙,故A正確;對于B,乙的數據分析素養為80分,數學建模素養為60分,故乙的數據分析素養優于數學建模素養,故B正確;對于C,甲的六大素養整體水平平均得分為,乙的六大素養整體水平均得分為,故C正確;對于D,甲的六大素養中數學運算為80分,不是最強的,故D錯誤;故選:D【點睛】本題考查了樣本數據的特征、平均數的計算,考查了學生的數據處理能力,屬于基礎題.9、B【解析】
先考慮奇偶性,再考慮特殊值,用排除法即可得到正確答案.【詳解】是奇函數,排除C,D;,排除A.故選:B.【點睛】本題考查函數圖象的判斷,屬于常考題.10、A【解析】
直線的方程為,令,得,得到a,b的關系,結合選項求解即可【詳解】直線的方程為,令,得.因為,所以,只有選項滿足條件.故選:A【點睛】本題考查直線與雙曲線的位置關系以及雙曲線的標準方程,考查運算求解能力.11、C【解析】
根據題意,分別計算“從6名男干部中選出2名男干部”和“從5名女干部中選出1名女干部”的取法數,由分步計數原理計算可得答案.【詳解】解:根據題意,從6名男干部中選出2名男干部,有種取法,從5名女干部中選出1名女干部,有種取法,則有種不同的選法;故選:C.【點睛】本題考查排列組合的應用,涉及分步計數原理問題,屬于基礎題.12、A【解析】
求得集合中函數的值域,由此求得,進而求得.【詳解】由,得,所以,所以.故選:A【點睛】本小題主要考查函數值域的求法,考查集合補集、交集的概念和運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
作出圖象,求出方程的根,分類討論的正負,數形結合即可.【詳解】當時,令,解得,所以當時,,則單調遞增,當時,,則單調遞減,當時,單調遞減,且,作出函數的圖象如圖:(1)當時,方程整理得,只有2個根,不滿足條件;(2)若,則當時,方程整理得,則,,此時各有1解,故當時,方程整理得,有1解同時有2解,即需,,因為(2),故此時滿足題意;或有2解同時有1解,則需,由(1)可知不成立;或有3解同時有0解,根據圖象不存在此種情況,或有0解同時有3解,則,解得,故,(3)若,顯然當時,和均無解,當時,和無解,不符合題意.綜上:的范圍是,故答案為:,【點睛】本題主要考查了函數零點與函數圖象的關系,考查利用導數研究函數的單調性,意在考查學生對這些知識的理解掌握水平和分析推理能力,屬于中檔題.14、①③④【解析】
先利用導數求得曲線在點處的切線方程,由此求得與的遞推關系式,進而證得數列是等比數列,由此判斷出四個結論中正確的結論編號.【詳解】∵,∴曲線在點處的切線方程為,則.∵,∴,則是首項為1,公比為的等比數列,從而,,.故所有正確結論的編號是①③④.故答案為:①③④【點睛】本小題主要考查曲線的切線方程的求法,考查根據遞推關系式證明等比數列,考查等比數列通項公式和前項和公式,屬于基礎題.15、【解析】
根據平移后關于軸對稱可知關于對稱,進而利用特殊值構造方程,從而求得結果.【詳解】向左平移個單位長度后得到偶函數圖象,即關于軸對稱關于對稱即:本題正確結果:【點睛】本題考查根據三角函數的對稱軸求解參數值的問題,關鍵是能夠通過平移后的對稱軸得到原函數的對稱軸,進而利用特殊值的方式來進行求解.16、2【解析】
根據是等腰直角三角形,且為中點可得,再由雙曲線的性質可得,解出即得.【詳解】由題,設點,由,解得,即線段,為直角三角形,,且,又為雙曲線右焦點,過點,且軸,,可得,,整理得:,即,又,.故答案為:【點睛】本題考查雙曲線的簡單性質,是常考題型.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】
(1)要證明面面,只需證明面即可;(2)以為坐標原點,以,,分別為,,軸建系,分別計算出面法向量,面的法向量,再利用公式計算即可.【詳解】證明:(1)因為底面為正方形,所以又因為,,滿足,所以又,面,面,,所以面.又因為面,所以,面面.(2)由(1)知,,兩兩垂直,以為坐標原點,以,,分別為,,軸建系如圖所示,則,,,,則,.所以,,,,設面法向量為,則由得,令得,,即;同理,設面的法向量為,則由得,令得,,即,所以,設二面角的大小為,則所以二面角余弦值為.【點睛】本題考查面面垂直的證明以及利用向量法求二面角,考查學生的運算求解能力,此類問題關鍵是準確寫出點的坐標,是一道中檔題.18、(1);(2)見解析【解析】
(1)對函數進行求導,可以求出曲線在點處的切線,利用直線的斜截式方程可以求出曲線的切線方程;(2)對函數進行求導,對實數進行分類討論,可以求出函數的單調區間.【詳解】(1)當時,函數定義域為,,所以切線方程為;(2)當時,函數定義域為,在上單調遞增當時,恒成立,函數定義域為,又在單調遞增,單調遞減,單調遞增當時,函數定義域為,在單調遞增,單調遞減,單調遞增當時,設的兩個根為且,由韋達定理易知兩根均為正根,且,所以函數的定義域為,又對稱軸,且,在單調遞增,單調遞減,單調遞增【點睛】本題考查了曲線切線方程的求法,考查了利用函數的導數討論函數的單調性問題,考查了分類思想.19、(1)(2)【解析】
(1)將表示為分段函數的形式,由此求得不等式的解集.(2)利用絕對值三角不等式,求得的取值范圍,根據分段函數解析式,求得的取值范圍,結合題意列不等式,解不等式求得的取值范圍.【詳解】(1),由得或或;解得.故所求解集為.(2),即.由(1)知,所以,即.∴,∴.【點睛】本小題考查了絕對值不等式,絕對值三角不等式和函數最值問題,考查運算求解能力,推理論證能力,化歸與轉化思想.20、(1);(2).【解析】
若補充②③根據已知可得平面,從而有,結合,可得平面,故有,而,得到,②③成立與①②相同,①③成立,可得,所以任意補充兩個條件,結果都一樣,以①②作為條件分析;(1)設,可得,進而求出梯形的面積,可求出,即可求出結論;(2),以為坐標原點,建立空間坐標系,求出坐標,由(1)得為平面的法向量,根據空間向量的線面角公式即可求解.【詳解】第一種情況:若將①,②作為已知條件,解答如下:(1)設平面為平面.∵,∴平面,而平面平面,∴,又為中點.設,則.在三角形中,,由知平面,∴,∴梯形的面積,,,平面,,,∴,故,.(2)如圖,分別以所在直線為軸建立空間直角坐標系,設,則,由(1)得為平面的一個法向量,因為,所以直線與平面所成角的正弦值為.第二種情況:若將①,③作為已知條件,則由知平面,,又,所以平面,,又,故為中點,即,解答如上不變.第三種情況:若將②,③作為已知條件,由及第二種情況知,又,易知,解答仍如上不變.【點睛】本題考查空間點、線、面位置關系,以及體積、直線與平面所成的角,考查計算求解能力,屬于中檔題.21、(1);(2)2.【解析】
(1)利用的最小值為1,可得,,即可求橢圓的方程;(2)將直線的方程代入橢圓的方程中,得到關于的一元二次方程,由直線與橢圓僅有一個公共點知,即可得到,的關系式,利用點到直線的距離公式即可得到,.當時,設直線的傾斜角為,則,即可得到四邊形面積的表達式,利用基本不等式的性質,結合當時,四邊形是矩形,即可得出的最大值.【詳解】(1)設,則,,,,由題意得,,橢圓的方程為;
(2)將直線的方程代入橢圓
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生產安全月主題
- 甘肅省慶陽市合水縣2025屆數學三下期末調研模擬試題含解析
- 北京市首都師大附中2025年高三5月教學質量調研化學試題含解析
- 河南工業職業技術學院《項目組織與人力資源管理》2023-2024學年第二學期期末試卷
- 廈門安防科技職業學院《汽車專業英語》2023-2024學年第二學期期末試卷
- 廣州航海學院《JavaEEWeb技術開發實戰》2023-2024學年第二學期期末試卷
- 海南科技職業大學《3Dsm》2023-2024學年第二學期期末試卷
- 2025年山東實驗中學高三第二學期期末檢測試題歷史試題含解析
- 江蘇航空職業技術學院《企業管理與發展戰略(B)》2023-2024學年第二學期期末試卷
- 江西省新建一中2025屆高三下學期高考適應性考試(二)生物試題含解析
- 美國簽證行程表模板
- 飯店轉包合同
- 人教版音樂九下第二單元《梨園風采(二)》夫妻雙雙把家還教案
- 執法辦案和執法監督注意事項課件
- 高檔汽車租賃合同書
- 河南濮陽靜探儀說明書jty
- JJG 141-2013工作用貴金屬熱電偶
- GB/T 34630.3-2017攪拌摩擦焊鋁及鋁合金第3部分:焊接操作工的技能評定
- GB/T 32161-2015生態設計產品評價通則
- MTS4000光時域反射儀
- GB/T 24918-2010低溫介質用緊急切斷閥
評論
0/150
提交評論