廣東省廣州市第89中學2025屆高三實驗班寒假練習數學試題試卷_第1頁
廣東省廣州市第89中學2025屆高三實驗班寒假練習數學試題試卷_第2頁
廣東省廣州市第89中學2025屆高三實驗班寒假練習數學試題試卷_第3頁
廣東省廣州市第89中學2025屆高三實驗班寒假練習數學試題試卷_第4頁
廣東省廣州市第89中學2025屆高三實驗班寒假練習數學試題試卷_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省廣州市第89中學2025屆高三實驗班寒假練習數學試題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.曲線在點處的切線方程為()A. B. C. D.2.如圖,四邊形為平行四邊形,為中點,為的三等分點(靠近)若,則的值為()A. B. C. D.3.已知二次函數的部分圖象如圖所示,則函數的零點所在區間為()A. B. C. D.4.半徑為2的球內有一個內接正三棱柱,則正三棱柱的側面積的最大值為()A. B. C. D.5.已知平面向量,,滿足:,,則的最小值為()A.5 B.6 C.7 D.86.已知向量,,則向量在向量上的投影是()A. B. C. D.7.學業水平測試成績按照考生原始成績從高到低分為、、、、五個等級.某班共有名學生且全部選考物理、化學兩科,這兩科的學業水平測試成績如圖所示.該班學生中,這兩科等級均為的學生有人,這兩科中僅有一科等級為的學生,其另外一科等級為,則該班()A.物理化學等級都是的學生至多有人B.物理化學等級都是的學生至少有人C.這兩科只有一科等級為且最高等級為的學生至多有人D.這兩科只有一科等級為且最高等級為的學生至少有人8.已知拋物線和點,直線與拋物線交于不同兩點,,直線與拋物線交于另一點.給出以下判斷:①直線與直線的斜率乘積為;②軸;③以為直徑的圓與拋物線準線相切.其中,所有正確判斷的序號是()A.①②③ B.①② C.①③ D.②③9.復數的()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.在正方體中,點、分別為、的中點,過點作平面使平面,平面若直線平面,則的值為()A. B. C. D.11.已知非零向量滿足,若夾角的余弦值為,且,則實數的值為()A. B. C.或 D.12.我國數學家陳景潤在哥德巴赫猜想的研究中取得了世界領先的成果,哥德巴赫猜想的內容是:每個大于2的偶數都可以表示為兩個素數的和,例如:,,,那么在不超過18的素數中隨機選取兩個不同的數,其和等于16的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在各項均為正數的等比數列中,,且,成等差數列,則___________.14.如圖所示的流程圖中,輸出的值為______.15.已知,為虛數單位,且,則=_____.16.在的展開式中,的系數為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,均為正項數列,其前項和分別為,,且,,,當,時,,.(1)求數列,的通項公式;(2)設,求數列的前項和.18.(12分)在中,角所對的邊分別是,且.(1)求;(2)若,求.19.(12分)如圖,在四棱錐中,底面,底面是直角梯形,為側棱上一點,已知.(Ⅰ)證明:平面平面;(Ⅱ)求二面角的余弦值.20.(12分)已知函數(1)若,不等式的解集;(2)若,求實數的取值范圍.21.(12分)某工廠生產一種產品的標準長度為,只要誤差的絕對值不超過就認為合格,工廠質檢部抽檢了某批次產品1000件,檢測其長度,繪制條形統計圖如圖:(1)估計該批次產品長度誤差絕對值的數學期望;(2)如果視該批次產品樣本的頻率為總體的概率,要求從工廠生產的產品中隨機抽取2件,假設其中至少有1件是標準長度產品的概率不小于0.8時,該設備符合生產要求.現有設備是否符合此要求?若不符合此要求,求出符合要求時,生產一件產品為標準長度的概率的最小值.22.(10分)如圖,在三棱柱中,平面,,且.(1)求棱與所成的角的大小;(2)在棱上確定一點,使二面角的平面角的余弦值為.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

將點代入解析式確定參數值,結合導數的幾何意義求得切線斜率,即可由點斜式求的切線方程.【詳解】曲線,即,當時,代入可得,所以切點坐標為,求得導函數可得,由導數幾何意義可知,由點斜式可得切線方程為,即,故選:A.【點睛】本題考查了導數的幾何意義,在曲線上一點的切線方程求法,屬于基礎題.2.D【解析】

使用不同方法用表示出,結合平面向量的基本定理列出方程解出.【詳解】解:,又解得,所以故選:D【點睛】本題考查了平面向量的基本定理及其意義,屬于基礎題.3.B【解析】由函數f(x)的圖象可知,0<f(0)=a<1,f(1)=1-b+a=0,所以1<b<2.又f′(x)=2x-b,所以g(x)=ex+2x-b,所以g′(x)=ex+2>0,所以g(x)在R上單調遞增,又g(0)=1-b<0,g(1)=e+2-b>0,根據函數的零點存在性定理可知,函數g(x)的零點所在的區間是(0,1),故選B.4.B【解析】

設正三棱柱上下底面的中心分別為,底面邊長與高分別為,利用,可得,進一步得到側面積,再利用基本不等式求最值即可.【詳解】如圖所示.設正三棱柱上下底面的中心分別為,底面邊長與高分別為,則,在中,,化為,,,當且僅當時取等號,此時.故選:B.【點睛】本題考查正三棱柱與球的切接問題,涉及到基本不等式求最值,考查學生的計算能力,是一道中檔題.5.B【解析】

建立平面直角坐標系,將已知條件轉化為所設未知量的關系式,再將的最小值轉化為用該關系式表達的算式,利用基本不等式求得最小值.【詳解】建立平面直角坐標系如下圖所示,設,,且,由于,所以..所以,即..當且僅當時取得最小值,此時由得,當時,有最小值為,即,,解得.所以當且僅當時有最小值為.故選:B【點睛】本小題主要考查向量的位置關系、向量的模,考查基本不等式的運用,考查數形結合的數學思想方法,屬于難題.6.A【解析】

先利用向量坐標運算求解,再利用向量在向量上的投影公式即得解【詳解】由于向量,故向量在向量上的投影是.故選:A【點睛】本題考查了向量加法、減法的坐標運算和向量投影的概念,考查了學生概念理解,數學運算的能力,屬于中檔題.7.D【解析】

根據題意分別計算出物理等級為,化學等級為的學生人數以及物理等級為,化學等級為的學生人數,結合表格中的數據進行分析,可得出合適的選項.【詳解】根據題意可知,名學生減去名全和一科為另一科為的學生人(其中物理化學的有人,物理化學的有人),表格變為:物理化學對于A選項,物理化學等級都是的學生至多有人,A選項錯誤;對于B選項,當物理和,化學都是時,或化學和,物理都是時,物理、化學都是的人數最少,至少為(人),B選項錯誤;對于C選項,在表格中,除去物理化學都是的學生,剩下的都是一科為且最高等級為的學生,因為都是的學生最少人,所以一科為且最高等級為的學生最多為(人),C選項錯誤;對于D選項,物理化學都是的最多人,所以兩科只有一科等級為且最高等級為的學生最少(人),D選項正確.故選:D.【點睛】本題考查合情推理,考查推理能力,屬于中等題.8.B【解析】

由題意,可設直線的方程為,利用韋達定理判斷第一個結論;將代入拋物線的方程可得,,從而,,進而判斷第二個結論;設為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設,到準線的距離分別為,,的半徑為,點到準線的距離為,顯然,,三點不共線,進而判斷第三個結論.【詳解】解:由題意,可設直線的方程為,代入拋物線的方程,有.設點,的坐標分別為,,則,.所.則直線與直線的斜率乘積為.所以①正確.將代入拋物線的方程可得,,從而,,根據拋物線的對稱性可知,,兩點關于軸對稱,所以直線軸.所以②正確.如圖,設為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設,到準線的距離分別為,,的半徑為,點到準線的距離為,顯然,,三點不共線,則.所以③不正確.故選:B.【點睛】本題主要考查拋物線的定義與幾何性質、直線與拋物線的位置關系等基礎知識,考查運算求解能力、推理論證能力和創新意識,考查數形結合思想、化歸與轉化思想,屬于難題.9.C【解析】所對應的點為(-1,-2)位于第三象限.【考點定位】本題只考查了復平面的概念,屬于簡單題.10.B【解析】

作出圖形,設平面分別交、于點、,連接、、,取的中點,連接、,連接交于點,推導出,由線面平行的性質定理可得出,可得出點為的中點,同理可得出點為的中點,結合中位線的性質可求得的值.【詳解】如下圖所示:設平面分別交、于點、,連接、、,取的中點,連接、,連接交于點,四邊形為正方形,、分別為、的中點,則且,四邊形為平行四邊形,且,且,且,則四邊形為平行四邊形,,平面,則存在直線平面,使得,若平面,則平面,又平面,則平面,此時,平面為平面,直線不可能與平面平行,所以,平面,,平面,平面,平面平面,,,所以,四邊形為平行四邊形,可得,為的中點,同理可證為的中點,,,因此,.故選:B.【點睛】本題考查線段長度比值的計算,涉及線面平行性質的應用,解答的關鍵就是找出平面與正方體各棱的交點位置,考查推理能力與計算能力,屬于中等題.11.D【解析】

根據向量垂直則數量積為零,結合以及夾角的余弦值,即可求得參數值.【詳解】依題意,得,即.將代入可得,,解得(舍去).故選:D.【點睛】本題考查向量數量積的應用,涉及由向量垂直求參數值,屬基礎題.12.B【解析】

先求出從不超過18的素數中隨機選取兩個不同的數的所有可能結果,然后再求出其和等于16的結果,根據等可能事件的概率公式可求.【詳解】解:不超過18的素數有2,3,5,7,11,13,17共7個,從中隨機選取兩個不同的數共有,其和等于16的結果,共2種等可能的結果,故概率.故選:B.【點睛】古典概型要求能夠列舉出所有事件和發生事件的個數,本題不可以列舉出所有事件但可以用分步計數得到,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

利用等差中項的性質和等比數列通項公式得到關于的方程,解方程求出代入等比數列通項公式即可.【詳解】因為,成等差數列,所以,由等比數列通項公式得,,所以,解得或,因為,所以,所以等比數列的通項公式為.故答案為:【點睛】本題考查等差中項的性質和等比數列通項公式;考查運算求解能力和知識綜合運用能力;熟練掌握等差中項和等比數列通項公式是求解本題的關鍵;屬于中檔題.14.4【解析】

根據流程圖依次運行直到,結束循環,輸出n,得出結果.【詳解】由題:,,,結束循環,輸出.故答案為:4【點睛】此題考查根據程序框圖運行結果求輸出值,關鍵在于準確識別循環結構和判斷框語句.15.4【解析】

解:利用復數相等,可知由有.16.【解析】

根據二項展開式定理,求出含的系數和含的系數,相乘即可.【詳解】的展開式中,所求項為:,的系數為.

故答案為:.【點睛】本題考查二項展開式定理的應用,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),(2)【解析】

(1),所,兩式相減,即可得到數列遞推關系求解通項公式,由,整理得,得到,即可求解通項公式;(2)由(1)可知,,即可求得數列的前項和.【詳解】(1)因為,所,兩式相減,整理得,當時,,解得,所以數列是首項和公比均為的等比數列,即,因為,整理得,又因為,所以,所以,即,因為,所以數列是以首項和公差均為1的等差數列,所以;(2)由(1)可知,,,即.【點睛】此題考查求數列的通項公式,以及數列求和,關鍵在于對題中所給關系合理變形,發現其中的關系,裂項求和作為一類常用的求和方法,需要在平常的學習中多做積累常見的裂項方式.18.(1)(2)【解析】

(1)根據正弦定理到,得到答案.(2)計算,再利用余弦定理計算得到答案.【詳解】(1)由,可得,因為,所以,所以.(2),又因為,所以.因為,所以,即.【點睛】本題考查了正弦定理和余弦定理,意在考查學生的計算能力.19.(Ⅰ)證明見解析;(Ⅱ).【解析】

(Ⅰ)先證明

,再證明平面,利用面面垂直的判定定理,即可求證所求證;(Ⅱ)根據題意以為軸、軸、軸建立空間直角坐標系,求出平面和平面的向量,利用公式即可求解.【詳解】(Ⅰ)證:由已知得又平面,平面,,而故,平面平面,平面平面(Ⅱ)由(Ⅰ)知,推理知梯形中,,,有,又,故所以相似,故有,即所以,以為軸、軸、軸建立如圖所示的空間直角坐標系,則,,,設平面的法向量為,則令,則,是平面的一個法向量設平面的一個法向量為令,則是平面的一個法向量=又二面角為鈍二面角,其余弦值為.【點睛】本題考查線面、面面垂直的判定定理與性質定理,考查向量法求二面角的余弦值,考查直觀想象能力與運算求解能力,屬于中檔題.20.(1)(2)【解析】

(1)依題意可得,再用零點分段法分類討論可得;(2)依題意可得對恒成立,根據絕對值的幾何意義將絕對值去掉,分別求出解集,則兩解集的并集為,得到不等式即可解得;【詳解】解:(1)若,,則,即,當時,原不等式等價于,解得當時,原不等式等價于,解得,所以;當時,原不等式等價于,解得;綜上,原不等式的解集為;(2)即,得或,由解得,由解得,要使得的解集為,則解得,故的取值范圍是.【點睛】本題考查絕對值不等式的解法,著重考查等價轉化思想與分類討論思想的綜合應用,屬于中檔題.21.(1)(2)【解析】

(1)根據題意即可寫出該批次產品長度誤差的絕對值的頻率分布列,再根據期望公式即可求出;(2)由(1)可知,任取一件產品是標準長度的概率為0.4,即可求出隨機抽取2件產品,都不是標準長度產品的概率,由對立事件的概率公式即可得到隨機抽取2件產品,至少有1件是標準長度產品的概率,判斷其是否符合生產要求;當不符合要求時,設生產一件產品為標準長度的概率為,可根據上述方法求出,解,即可得出最小值.【詳解】(1)由柱狀圖,該批次產品長度誤差的絕對值的頻率分布列為下表:00.010.020.030.04頻率0.40.30.20.0750.025所以的數學期望的估計為.(2)由(1)可知任取一件產品是標準長度的概率為0.4,設至少有1件是標準長度產品為事件,則,故不符合概率不小于0.8的要求.設生產一

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論