平面直角坐標系的概念課件人教版數學七年級下冊_第1頁
平面直角坐標系的概念課件人教版數學七年級下冊_第2頁
平面直角坐標系的概念課件人教版數學七年級下冊_第3頁
平面直角坐標系的概念課件人教版數學七年級下冊_第4頁
平面直角坐標系的概念課件人教版數學七年級下冊_第5頁
已閱讀5頁,還剩16頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第九章平面直角坐標系9.1用坐標描述平面內點的位置人教版-數學-七年級下冊9.1.1平面直角坐標系的概念學習目標1.平面直角坐標系的概念,點的坐標表示及描點方法?!局攸c】2.坐標平面內的點與有序實數對的一一對應關系,以及各象限內點的坐標特征?!倦y點】新課導入1.復習回顧:提問學生數軸的定義、數軸上點的坐標表示方法,以及數軸上的點與實數的一一對應關系。引導學生思考:如何確定平面內點的位置?

2.引出課題:類似于利用數軸確定直線上點的位置,我們可以在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系,從而確定平面內點的位置。新知探究知識點1

平面直角坐標系的概念

平面直角坐標系的組成:水平的數軸稱為x軸(橫軸),豎直的數軸稱為y軸(縱軸),兩軸的交點O為原點,通常取向右和向上為正方向。x軸(橫軸):水平放置,向右為正方向,數軸上的點表示橫坐標。y軸(縱軸):豎直放置,向上為正方向,數軸上的點表示縱坐標。原點O:x軸與y軸的交點,坐標為(0,0),是坐標系的基準點。平面直角坐標系:由x軸、y軸和原點共同組成,用于確定平面內任意一點的位置。新知探究知識點2

點的坐標表示

圖9.1-3中的點A為例由點A分別向x軸和y軸作垂線,垂足在x軸上的坐標是3(橫坐標),在y軸上的坐標是4(縱坐標),有序數對(3,4)即為點A的坐標,記作A(3,4)。課堂任務:模仿寫出圖9.1-3中點B、C、D、E的坐標。橫坐標:過點向x軸作垂線,垂足在x軸上對應的實數??v坐標:過點向y軸作垂線,垂足在y軸上對應的實數。有序數對:用(x,y)表示點的坐標,x為橫坐標,y為縱坐標,順序不可顛倒。新知探究知識點3

原點及坐標軸上點的坐標特征

圖9.1-3中的為例原點O的坐標為(0,0),x軸上的點縱坐標為0,y軸上的點橫坐標為0。新知探究知識點4

象限的劃分

課本圖9.1-4為例第一象限:x>0,y>0,坐標符號為(+,+)。第二象限:x<0,y>0,坐標符號為(-,+)。第三象限:x<0,y<0,坐標符號為(-,-)。第四象限:x>0,y<0,坐標符號為(+,-)。示例:點(5,0)在x軸上,點(0,-4)在y軸上課堂練習練習1:寫出圖中點A、B、C、D、E、F的坐標。練習2:在平面直角坐標系中描出L(-5,-3)、M(4,0)、N(-6,2)、P(5,-3.5)、Q(0,5)、R(6,2)。課堂小結知識梳理:1平面直角坐標系的概念2點的坐標表示方法3原點及坐標軸上點的坐標特征4象限的劃分。方法學習總結:建立從一維到二維的數學思想學會將以及坐標與點的一一對應關系。例題解析例1在平面直角坐標系中描出下列各點:A(4,5)、B(-2,3)、C(-2.5,-2)、D(4,-2)、E(0,-4)。步驟1:確定橫坐標。在x軸上找到表示橫坐標的點。例如,點A的橫坐標為4,在x軸上找到4的位置。步驟2:確定縱坐標。在y軸上找到表示縱坐標的點。例如,點A的縱坐標為5,在y軸上找到5的位置。步驟3:作垂線。過x軸上的點作x軸的垂線,過y軸上的點作y軸的垂線。兩條垂線的交點即為所求點。例題解析例2根據點所在的位置,用“+”、“-”填表例題解析例3:寫出圖中點A、B、C、D、E、F的坐標。·

解析:o

A點:從x軸-3作垂線,y軸2作垂線,得A(-3,2);o

B點:同理得B(-2,-3)。易錯點:注意負坐標的方向(左、下為負)。例題解析例4:判斷點M(3,-2)、N(-4,0)、P(0,5)所在的象限或坐標軸。

解析:oM(3,-2):橫正縱負→第四象限;oN(-4,0):y=0→x軸上;oP(0,5):x=0→y軸上。知識點:象限符號特征、坐標軸上點的特點例題解析例5:在坐標系中畫出四邊形ABCD,頂點坐標A(2,3)、B(-1,4)、C(-3,-2)、D(4,-1)。

步驟:a.依次描出各點;b.按順序連接A→B→C→D→A。

知識點:坐標的幾何應用,圖形繪制方法。例題解析例6:在坐標系中描出點G(0,0)、H(-3,2)、I(4,-1)、J(-1,-3),并連接成圖形。

知識點:原點坐標、負坐標描點。例題解析例7:(中考題改編):若點K(2m+1,m-3)在第四象限,求m的取值范圍。

解析:o第四象限特征:橫坐標>0,縱坐標<0→2m+1>0且m-3<0→m>-0.5且m<3。例題解析例8:(判斷點Q(-5,0)、R(0,3)、S(-2,4)的位置。

解析:Q(-5,0)→x軸;R(0,3)→y軸;S(-2,4)→第二象限。例題解析例9:在坐標系中描出點G(0,0)、H(-3,2)、I(4,-1)、J(-1,-3),并連接成圖形。

知識點:原點坐標、負坐標描點。例題解析例10:若點K(2m+1,m-3)在第四象限,求m的取值范圍。

解析:o第四象限特征:橫坐標>0,縱坐標<0→2m+1>0且m-3<0→m>-0.5且m<3。知識總結與口訣1.坐標平面記憶口訣o

象限劃分:右右上,左左上,左左下,右右下。o

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論