陜西省寶雞市2025年高三第二次診斷性考試提前模擬數學試題試卷含解析_第1頁
陜西省寶雞市2025年高三第二次診斷性考試提前模擬數學試題試卷含解析_第2頁
陜西省寶雞市2025年高三第二次診斷性考試提前模擬數學試題試卷含解析_第3頁
陜西省寶雞市2025年高三第二次診斷性考試提前模擬數學試題試卷含解析_第4頁
陜西省寶雞市2025年高三第二次診斷性考試提前模擬數學試題試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

陜西省寶雞市2025年高三第二次診斷性考試提前模擬數學試題試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在等差數列中,,,若(),則數列的最大值是()A. B.C.1 D.32.已知不同直線、與不同平面、,且,,則下列說法中正確的是()A.若,則 B.若,則C.若,則 D.若,則3.閱讀如圖的程序框圖,運行相應的程序,則輸出的的值為()A. B. C. D.4.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.在空間直角坐標系中,四面體各頂點坐標分別為:.假設螞蟻窩在點,一只螞蟻從點出發,需要在,上分別任意選擇一點留下信息,然后再返回點.那么完成這個工作所需要走的最短路徑長度是()A. B. C. D.6.某地區教育主管部門為了對該地區模擬考試成進行分析,隨機抽取了200分到450分之間的2000名學生的成績,并根據這2000名學生的成績畫出樣本的頻率分布直方圖,如圖所示,則成績在,內的學生人數為()A.800 B.1000 C.1200 D.16007.《聊齋志異》中有這樣一首詩:“挑水砍柴不堪苦,請歸但求穿墻術.得訣自詡無所阻,額上墳起終不悟.”在這里,我們稱形如以下形式的等式具有“穿墻術”:,,,,則按照以上規律,若具有“穿墻術”,則()A.48 B.63 C.99 D.1208.設,,,則()A. B. C. D.9.函數在內有且只有一個零點,則a的值為()A.3 B.-3 C.2 D.-210.黨的十九大報告明確提出:在共享經濟等領域培育增長點、形成新動能.共享經濟是公眾將閑置資源通過社會化平臺與他人共享,進而獲得收入的經濟現象.為考察共享經濟對企業經濟活躍度的影響,在四個不同的企業各取兩個部門進行共享經濟對比試驗,根據四個企業得到的試驗數據畫出如下四個等高條形圖,最能體現共享經濟對該部門的發展有顯著效果的圖形是()A. B.C. D.11.在中,在邊上滿足,為的中點,則().A. B. C. D.12.已知實數滿足線性約束條件,則的取值范圍為()A.(-2,-1] B.(-1,4] C.[-2,4) D.[0,4]二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,若函數在處的切線與圓存在公共點,則實數的取值范圍為_____.14.已知向量,,,則__________.15.已知拋物線,點為拋物線上一動點,過點作圓的切線,切點分別為,則線段長度的取值范圍為__________.16.(x+y)(2x-y)5的展開式中x3y3的系數為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的焦距為,斜率為的直線與橢圓交于兩點,若線段的中點為,且直線的斜率為.(1)求橢圓的方程;(2)若過左焦點斜率為的直線與橢圓交于點為橢圓上一點,且滿足,問:是否為定值?若是,求出此定值,若不是,說明理由.18.(12分)如圖,是正方形,點在以為直徑的半圓弧上(不與,重合),為線段的中點,現將正方形沿折起,使得平面平面.(1)證明:平面.(2)三棱錐的體積最大時,求二面角的余弦值.19.(12分)已知f(x)=|x+3|-|x-2|(1)求函數f(x)的最大值m;(2)正數a,b,c滿足a+2b+3c=m,求證:20.(12分)的內角,,的對邊分別為,,已知,.(1)求;(2)若的面積,求.21.(12分)在中,為邊上一點,,.(1)求;(2)若,,求.22.(10分)已知函數.(Ⅰ)當時,求不等式的解集;(Ⅱ)若存在滿足不等式,求實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

在等差數列中,利用已知可求得通項公式,進而,借助函數的的單調性可知,當時,取最大即可求得結果.【詳解】因為,所以,即,又,所以公差,所以,即,因為函數,在時,單調遞減,且;在時,單調遞減,且.所以數列的最大值是,且,所以數列的最大值是3.故選:D.本題考查等差數列的通項公式,考查數列與函數的關系,借助函數單調性研究數列最值問題,難度較易.2.C【解析】

根據空間中平行關系、垂直關系的相關判定和性質可依次判斷各個選項得到結果.【詳解】對于,若,則可能為平行或異面直線,錯誤;對于,若,則可能為平行、相交或異面直線,錯誤;對于,若,且,由面面垂直的判定定理可知,正確;對于,若,只有當垂直于的交線時才有,錯誤.故選:.本題考查空間中線面關系、面面關系相關命題的辨析,關鍵是熟練掌握空間中的平行關系與垂直關系的相關命題.3.C【解析】

根據給定的程序框圖,計算前幾次的運算規律,得出運算的周期性,確定跳出循環時的n的值,進而求解的值,得到答案.【詳解】由題意,,第1次循環,,滿足判斷條件;第2次循環,,滿足判斷條件;第3次循環,,滿足判斷條件;可得的值滿足以3項為周期的計算規律,所以當時,跳出循環,此時和時的值對應的相同,即.故選:C.本題主要考查了循環結構的程序框圖的計算與輸出問題,其中解答中認真審題,得出程序運行時的計算規律是解答的關鍵,著重考查了推理與計算能力.4.B【解析】

或,從而明確充分性與必要性.【詳解】,由可得:或,即能推出,但推不出∴“”是“”的必要不充分條件故選本題考查充分性與必要性,簡單三角方程的解法,屬于基礎題.5.C【解析】

將四面體沿著劈開,展開后最短路徑就是的邊,在中,利用余弦定理即可求解.【詳解】將四面體沿著劈開,展開后如下圖所示:最短路徑就是的邊.易求得,由,知,由余弦定理知其中,∴故選:C本題考查了余弦定理解三角形,需熟記定理的內容,考查了學生的空間想象能力,屬于中檔題.6.B【解析】

由圖可列方程算得a,然后求出成績在內的頻率,最后根據頻數=總數×頻率可以求得成績在內的學生人數.【詳解】由頻率和為1,得,解得,所以成績在內的頻率,所以成績在內的學生人數.故選:B本題主要考查頻率直方圖的應用,屬基礎題.7.C【解析】

觀察規律得根號內分母為分子的平方減1,從而求出n.【詳解】解:觀察各式發現規律,根號內分母為分子的平方減1所以故選:C.本題考查了歸納推理,發現總結各式規律是關鍵,屬于基礎題.8.A【解析】

先利用換底公式將對數都化為以2為底,利用對數函數單調性可比較,再由中間值1可得三者的大小關系.【詳解】,,,因此,故選:A.本題主要考查了利用對數函數和指數函數的單調性比較大小,屬于基礎題.9.A【解析】

求出,對分類討論,求出單調區間和極值點,結合三次函數的圖像特征,即可求解.【詳解】,若,,在單調遞增,且,在不存在零點;若,,在內有且只有一個零點,.故選:A.本題考查函數的零點、導數的應用,考查分類討論思想,熟練掌握函數圖像和性質是解題的關鍵,屬于中檔題.10.D【解析】根據四個列聯表中的等高條形圖可知,圖中D中共享與不共享的企業經濟活躍度的差異最大,它最能體現共享經濟對該部門的發展有顯著效果,故選D.11.B【解析】

由,可得,,再將代入即可.【詳解】因為,所以,故.故選:B.本題考查平面向量的線性運算性質以及平面向量基本定理的應用,是一道基礎題.12.B【解析】

作出可行域,表示可行域內點與定點連線斜率,觀察可行域可得最小值.【詳解】作出可行域,如圖陰影部分(含邊界),表示可行域內點與定點連線斜率,,,過與直線平行的直線斜率為-1,∴.故選:B.本題考查簡單的非線性規劃.解題關鍵是理解非線性目標函數的幾何意義,本題表示動點與定點連線斜率,由直線與可行域的關系可得結論.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

利用導數的幾何意義可求得函數在處的切線,再根據切線與圓存在公共點,利用圓心到直線的距離滿足的條件列式求解即可.【詳解】解:由條件得到又所以函數在處的切線為,即圓方程整理可得:即有圓心且所以圓心到直線的距離,即.解得或,故答案為:.本題主要考查了導數的幾何意義求解切線方程的問題,同時也考查了根據直線與圓的位置關系求解參數范圍的問題,屬于基礎題.14.3【解析】

由題意得,,再代入中,計算即可得答案.【詳解】由題意可得,,∴,解得,∴.故答案為:.本題考查向量模的計算,考查函數與方程思想、轉化與化歸思想,考查運算求解能力,求解時注意向量數量積公式的運用.15.【解析】

連接,易得,可得四邊形的面積為,從而可得,進而求出的取值范圍,可求得的范圍.【詳解】如圖,連接,易得,所以四邊形的面積為,且四邊形的面積為三角形面積的兩倍,所以,所以,當最小時,最小,設點,則,所以當時,,則,當點的橫坐標時,,此時,因為隨著的增大而增大,所以的取值范圍為.故答案為:.本題考查直線與圓的位置關系的應用,考查拋物線上的動點到定點的距離的求法,考查學生的計算求解能力,屬于中檔題.16.40【解析】

先求出的展開式的通項,再求出即得解.【詳解】設的展開式的通項為,令r=3,則,令r=2,則,所以展開式中含x3y3的項為.所以x3y3的系數為40.故答案為:40本題主要考查二項式定理求指定項的系數,意在考查學生對這些知識的理解掌握水平.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1).(2)為定值.過程見解析.【解析】分析:(1)焦距說明,用點差法可得=.這樣可解得,得橢圓方程;(2)若,這種特殊情形可直接求得,在時,直線方程為,設,把直線方程代入橢圓方程,后可得,然后由紡長公式計算出弦長,同時直線方程為,代入橢圓方程可得點坐標,從而計算出,最后計算即可.詳解:(1)由題意可知,設,代入橢圓可得:,兩式相減并整理可得,,即.又因為,,代入上式可得,.又,所以,故橢圓的方程為.(2)由題意可知,,當為長軸時,為短半軸,此時;否則,可設直線的方程為,聯立,消可得,,則有:,所以設直線方程為,聯立,根據對稱性,不妨得,所以.故,綜上所述,為定值.點睛:設直線與橢圓相交于兩點,的中點為,則有,證明方法是點差法:即把點坐標代入橢圓方程得,,兩式相減,結合斜率公式可得.18.(1)見解析(2)【解析】

(1)利用面面垂直的性質定理證得平面,由此證得,根據圓的幾何性質證得,由此證得平面.(2)判斷出三棱錐的體積最大時點的位置.建立空間直角坐標系,通過平面和平面的法向量,計算出二面角的余弦值.【詳解】(1)證明:因為平面平面是正方形,所以平面.因為平面,所以.因為點在以為直徑的半圓弧上,所以.又,所以平面.(2)解:顯然,當點位于的中點時,的面積最大,三棱錐的體積也最大.不妨設,記中點為,以為原點,分別以的方向為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,則,設平面的法向量為,則令,得.設平面的法向量為,則令,得,所以.由圖可知,二面角為銳角,故二面角的余弦值為.本小題主要考查線面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.19.(1)(2)見解析【解析】

(1)利用絕對值三角不等式求得的最大值.(2)由(1)得.方法一,利用柯西不等式證得不等式成立;方法二,利用“的代換”的方法,結合基本不等式證得不等式成立.【詳解】(1)由絕對值不等式性質得當且僅當即時等號成立,所以(2)由(1)得.法1:由柯西不等式得當且僅當時等號成立,即,所以.法2:由得,,當且僅當時“=”成立.本小題主要考查絕對值三角不等式,考查利用柯西不等式、基本不等式證明不等式,屬于中檔題.20.(1);(2)【解析】

試題分析:(1)根據余弦定理求出B,帶入條件求出,利用同角三角函數關系求其余弦,再利用兩角差的余弦定理即可求出;(2)根據(1)及面積公式可得,利用正弦定理即可求出.試題解析:(1)由,得,∴.∵,∴.由,得,∴.∴.(2)由(1),得.由及題設條件,得,∴.由,得,∴,∴.點睛:解決三角形中的角邊問題時,要根據條件選擇正余弦定理,將問題轉化統一為邊的問題或角的問題,利用三角中兩角和差等公式處理,特別注意內角和定理的運用,涉及三角形面積最值問題時,注意均值不等式的利用,特別求角的時候,要注意分析角的范圍,才能寫出角的大小.21.(1);(2)4【解析】

(1),利用兩角差的正弦公式計算即可;(2)設,在中,用正弦定理將用x表示,在中用一次余弦定理即可解決.【詳解】(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論