




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第十一章不等式與不等式組11.1不等式11.1.1不等式及其解集教學目標課題11.1.1不等式及其解集授課人素養(yǎng)目標1.理解不等式的概念,理解不等式的解與解集的意義,知道它們的區(qū)別與聯(lián)系.2.經歷現(xiàn)實生活中不等關系的探究過程,體會建模思想.3.會用數軸表示簡單不等式的解集,滲透數形結合思想.教學重點正確理解不等式、不等式的解與解集的意義,把不等式的解集正確地表示在數軸上.教學難點理解不等式解集的意義以及在數軸上正確表示不等式的解集.教學活動教學步驟師生活動活動一:創(chuàng)設情境,新知導入【設計意圖】通過實例創(chuàng)設情境,從“等”過渡到“不等”,激發(fā)學生的學習興趣,引入新課.【情境引入】我們學過等式,知道利用等式可以解決許多問題.同時,我們也知道在現(xiàn)實生活中還存在許多不等關系,利用不等關系同樣可以解決實際問題.(1)猜大小.同學們知道圖①中的兩個蘋果誰的體積比較大嗎?左邊的蘋果的體積比較大.(2)猜體重.同學們知道圖②中的小明和小穎誰的體重比較大嗎?小明的體重比較大.【教學建議】利用學生感興趣的圖片、游戲,使學生體會到在現(xiàn)實生活中存在著許多不等關系,比如身高、體重、分數等,從而引入不等式的概念.活動二:問題引入,探究新知【設計意圖】通過問題引入不等式的概念,使學生體會不等式是表示不等關系的式子,并能根據問題描述列出簡單的不等式.探究點1不等式的概念與列不等式閱讀教材P121至例1之前,想一想:(1)對于課本中的“問題”,若設車速為xkm/h,則:①從時間的角度看,因為時間=eq\f(路程,速度),所以不等關系可以表示為eq\f(210,x)<2.②從路程的角度看,因為路程=時間×速度,所以不等關系可以表示為2x>210.(2)像①②這樣用符號“<”或“>”表示不等關系的式子,叫作不等式.像a+2≠a-2這樣用“≠”表示不等關系的式子也是不等式.“≠”是不等于號,讀作“不等于”,它表示兩個量不相等(填“相等”或“不相等”).表示不等關系的“>”“<”“≠”都是不等號.我們常用不等式來表示不等關系.(3)在下列所給式子:①a+3≠1;②eq\f(1,2)x>2;③3<5;④3x+1;⑤-2>-1;⑥eq\f(1,x)<-1;⑦a+b=b+a中,屬于不等式的有①②③⑤⑥.例1(教材P121例1)用不等式表示下列不等關系:(1)a與15的和大于27;(2)b的一半與3的差是負數;(3)某縣在鄉(xiāng)村振興項目的援助下,共種植1333hm2獼猴桃,種植面積超過全縣原有獼猴桃種植面積的18倍.解:(1)a+15>27;(2)eq\f(b,2)-3<0;(3)設這個縣原有獼猴桃種植面積為xhm2,那么1333>18x,也可以表示為18x<1333.【對應訓練】1.如圖,身高為xcm的1號同學與身高為ycm的2號同學站在一起時,如果用一個不等式來表示他們的身高關系,那么這個式子可以表示成x<y.(填“>”“<”或“=”)2.教材P123練習第1題.【教學建議】教師引導學生觀察思考,從實際問題出發(fā),得出不等式的概念,再以實際問題為歸宿,讓學生學會列簡單的不等式.注意強調:判斷一個式子是不是不等式,關鍵看是否含表示不等關系的符號,與式子的正確性,是不是整式,或者是否含未知數都無關.【設計意圖】通過列舉滿足實際問題條件的數值使學生感受不等式的解的概念.探究點2不等式的解閱讀教材P121例1之后至P122探究之前,想一想:(1)要使汽車在8:00之前駛過A地,車速可以是110km/h嗎?107km/h呢?105km/h呢?90km/h呢?車速可以是110km/h或107km/h,不能是105km/h或90km/h.(2)請你類比方程的解的概念,歸納一下何謂不等式的解.使不等式成立的未知數的值叫作不等式的解.(3)根據你歸納的不等式的解的概念,判斷一下(1)中給出的數哪些是不等式2x>210的解,哪些不是.110,107是不等式2x>210的解,105,90不是不等式20x>210的解.【對應訓練】1.下列不是不等式5x-3<6的解的是(B)A.1B.2C.-1D.-22.教材P123練習第2題.【教學建議】教師引導學生類比方程的解的概念,確定不等式的解的概念,讓學生充分發(fā)表意見,并通過計算、動手驗證、動腦思考加深理解.提醒學生注意:①驗證不等式的解時,將其代入看不等式是否成立即可判斷;②有時候題目討論的是不等式的特殊解,如整數解等.【設計意圖】引入不等式的解集和解不等式的概念,探究在數軸上表示不等式的解集的方法.探究點3不等式的解集閱讀教材P122探究至本頁末尾,想一想:(1)再取x的一些值試一試:95,100,104,106,108,109,哪些是不等式2x>210的解?觀察不等式2x>210的解,它們都滿足什么條件?106,108,109是不等式2x>210的解.可以發(fā)現(xiàn),當x>105時,不等式2x>210總成立;而當x<105或x=105時,不等式2x>210不成立.這就是說,任何一個大于105的數都是不等式2x>210的解,這樣的解有無數個;任何一個小于或等于105的數都不是不等式2x>210的解.(2)什么叫作不等式的解集?它與不等式的解有何區(qū)別與聯(lián)系?什么叫作解不等式?一般地,一個含有未知數的不等式的所有的解,組成這個不等式的解集.不等式的解與不等式的解集的區(qū)別與聯(lián)系如下表:區(qū)別不等式的解集是能使不等式成立的所有未知數的值的集合,不等式的解是能使不等式成立的未知數的值聯(lián)系解集包含所有的解,所有的解組成解集求不等式的解集的過程叫作解不等式.(3)不等式的解集有哪幾種情況?在數軸上如何表示?空心圓圈表示什么意思?畫線方向怎樣確定?不等式的解集有以下四種情況,在數軸上的表示如下(a>0):不等式的解集x>ax>-ax<ax<-a用數軸表示在數軸上表示不等式的解集時,先畫數軸,再尋找臨界點,最后畫方向線.空心圓圈表示解集不包含這一臨界點.畫線時,大于臨界點向右畫,小于臨界點向左畫,且要與數軸平行.(4)根據以上探究總結一下,要使汽車在8:00之前駛過A地,對于車速有什么要求?不等式2x>210的解集是什么?表示在數軸上是怎樣的?由教材P121給出的不等式①能得出這個結果嗎?車速必須大于105km/h.不等式的解集是x>105.表示在數軸上如圖所示.由教材P121給出的不等式①能得出這個結果.【對應訓練】1.下列說法中,錯誤的是(B)A.不等式x<5的整數解有無數個B.不等式x>-5的負數解有有限個C.不等式x+4>0的解集是x>-4D.-40是不等式2x<-8的一個解2.教材P123練習第3題.拓展設問:把上題中得到的各解集分別表示在數軸上.解:(1)x>3;(2)x<4;(3)x>2.解集在數軸上的表示如圖所示.【教學建議】通過大量列舉不等式的解引導學生歸納得出不等式的解集的概念.教學過程中不僅要考慮到數學概念本身的特點,更要注意遵循學生學習數學的規(guī)律,努力為學生創(chuàng)造自主探究、合作交流的空間.同時,引導學生體驗用數軸表示不等式的解集,以增強學生數形結合的意識.有時候在數軸上表示不等式的解集會遇到是否包含臨界點這一問題,可以跟學生強調包含時則畫成實心圓點,表示“≥”或“≤”,這在下一課時將會學到.活動三:難點突破,提升探究【設計意圖】強化根據實際問題中的不等關系列不等式的能力,理解不等式的特殊解的意義.例2如圖,小明和爸爸媽媽玩蹺蹺板游戲,如果爸爸的體重是72kg,小明的體重是媽媽體重的一半,媽媽手中的啞鈴重6kg.(1)設媽媽的體重為xkg,請你根據圖中的不等關系列式.(2)媽媽的體重可以是40kg嗎?45kg呢?50kg呢?解:(1)x+eq\f(x,2)+6>72.(2)把x=40,45,50分別代入(1)中的不等式,發(fā)現(xiàn)當x=40時,不等式不成立;當x=45或50時,不等式成立.所以媽媽的體重不可以是40kg,可以是45kg或50kg.【對應訓練】某校要購買一批羽毛球拍和羽毛球,現(xiàn)有經費700元,已知一副羽毛球拍的價格為150元,一筒羽毛球的價格為30元,該校計劃購買羽毛球拍4副,且購買后經費要有剩余.(1)若購買羽毛球x筒,請根據以上描述列出數學關系式;(2)該校計劃至少購買一筒羽毛球,有幾種購買方案?解:(1)150×4+30x<700.(2)當x=1,2,3時,分別代入不等式,不等式成立;當x=4時,代入不等式,不等式不成立.所以有3種購買方案.【教學建議】學生分組討論交流,教師指定學生代表作答,并對學生的作答予以指導和訂正,使學生經歷現(xiàn)實生活中不等關系的探究過程,體會建立不等模型的思想,并能根據題目中的限制條件,求出不等式的特殊解,掌握驗證解的方法.活動四:隨堂訓練,課堂總結【隨堂訓練】見《創(chuàng)優(yōu)作業(yè)》“隨堂小練”冊子(或“隨堂作業(yè)”冊子)相應課時隨堂訓練.【課堂總結】師生一起回顧本節(jié)課所學主要內容,并請學生回答以下問題:1.什么是不等式?你會用不等式表示簡單問題中的不等關系嗎?2.什么是不等式的解?什么是不等式的解集?不等式的解與解集有什么區(qū)別與聯(lián)系?什么是解不等式?你能在數軸上表示不等式的解集嗎?【知識結構】【作業(yè)布置】1.教材P128習題11.1第1,2,3,6題.2.《創(chuàng)優(yōu)作業(yè)》主體本部分相應課時訓練.板書設計11.1.1不等式及其解集1.不等式的概念:用不等號表示不等關系的式子.2.列不等式.3.不等式的解和不等式的解集.4.用數軸表示不等式的解集.5.解不等式:求不等式的解集的過程.教學反思本節(jié)課的教學中設置了大量的實際生活情況,讓學生體會到現(xiàn)實生活中存在著大量的不等關系,不等式是這種不等關系的具體體現(xiàn).教學中還充分運用了類比思想,類比已經學習過的方程,讓學生體會“等”與“不等”之間的聯(lián)系,自己去發(fā)現(xiàn)、探索,從而得出不等式、不等式的解、不等式的解集的概念.解題大招一不等式的解集正確理解不等式的解集:對于一個含有未知數的不等式,它的所有解的集合叫作這個不等式的解集,這個解集可以在數軸上直觀地表示出來,是數形結合思想的具體表現(xiàn).不等式的解集要區(qū)分于不等式的解,如-4,-2,0,1,2都是不等式2x<6的解,但不是它的解集.例1下列說法錯誤的是(D)A.不等式5x-10>0的解有無數個B.3是不等式5x-10>0的解不等式5x-10>0的解集是x>2D.x>3是不等式5x-10>0的解集解析:2.9也滿足不等式5x-10>0,故x>3不是不等式5x-10>0的解集,故D選項錯誤,符合題意;A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高新技術企業(yè)廠房物業(yè)資產交接及維護服務合同
- 網紅餐廳品牌合作運營合同
- 高端商業(yè)綜合體場地承包經營合作協(xié)議
- 拆遷項目土地權屬調查合同
- 消費者隱私保護與信任-洞察闡釋
- 氣候變化與可持續(xù)投資-洞察闡釋
- 老年慢性病智能監(jiān)測與預警系統(tǒng)研究-洞察闡釋
- 數據驅動的業(yè)務決策-洞察闡釋
- 小學階段數學學習提升計劃
- 職業(yè)裝制造中的創(chuàng)新設計與價值流優(yōu)化-洞察闡釋
- 微播易中國廣告協(xié)會2025年社交媒體與KOL營銷趨勢報告
- 《離散數學》題庫答案
- 項目陪跑協(xié)議書
- 口腔種植手術協(xié)議書
- 小學英語-國際音標-練習及答案
- 2025-2030年國有銀行行業(yè)市場深度分析及競爭格局與投資發(fā)展研究報告
- 2025年建筑模板制品行業(yè)深度研究報告
- 掛名股東簽署協(xié)議書
- 提前預付工資協(xié)議書
- 湖北省荊門市2025年七年級下學期語文期末考試試卷及答案
- 2025年勞動與社會保障政策考試試題及答案
評論
0/150
提交評論