湖南省郴州市第五完全中學2024屆十校聯考最后數學試題含解析_第1頁
湖南省郴州市第五完全中學2024屆十校聯考最后數學試題含解析_第2頁
湖南省郴州市第五完全中學2024屆十校聯考最后數學試題含解析_第3頁
湖南省郴州市第五完全中學2024屆十校聯考最后數學試題含解析_第4頁
湖南省郴州市第五完全中學2024屆十校聯考最后數學試題含解析_第5頁
已閱讀5頁,還剩23頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省郴州市第五完全中學2024屆十校聯考最后數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知M=9x2-4x+3,N=5x2+4x-2,則M與N的大小關系是()A.M>N B.M=N C.M<N D.不能確定2.某服裝店用10000元購進一批某品牌夏季襯衫若干件,很快售完;該店又用14700元錢購進第二批這種襯衫,所進件數比第一批多40%,每件襯衫的進價比第一批每件襯衫的進價多10元,求第一批購進多少件襯衫?設第一批購進x件襯衫,則所列方程為()A.﹣10= B.+10=C.﹣10= D.+10=3.將拋物線y=x2向左平移2個單位,再向下平移5個單位,平移后所得新拋物線的表達式為()A.y=(x+2)2﹣5B.y=(x+2)2+5C.y=(x﹣2)2﹣5D.y=(x﹣2)2+54.去年二月份,某房地產商將房價提高40%,在中央“房子是用來住的,不是用來炒的”指示下達后,立即降價30%.設降價后房價為x,則去年二月份之前房價為()A.(1+40%)×30%x B.(1+40%)(1﹣30%)xC. D.5.如圖,在中,,將折疊,使點落在邊上的點處,為折痕,若,則的值為()A. B. C. D.6.已知下列命題:①對頂角相等;②若a>b>0,則<;③對角線相等且互相垂直的四邊形是正方形;④拋物線y=x2﹣2x與坐標軸有3個不同交點;⑤邊長相等的多邊形內角都相等.從中任選一個命題是真命題的概率為()A. B. C. D.7.已知a<1,點A(x1,﹣2)、B(x2,4)、C(x3,5)為反比例函數圖象上的三點,則下列結論正確的是()A.x1>x2>x3 B.x1>x3>x2 C.x3>x1>x2 D.x2>x3>x18.如圖,在△ABC中,點D,E分別在邊AB,AC上,且AEAB=ADA.1:3B.1:2C.1:3D.9.已知x1、x2是關于x的方程x2﹣ax﹣2=0的兩根,下列結論一定正確的是()A.x1≠x2 B.x1+x2>0 C.x1?x2>0 D.x1<0,x2<010.如圖,在中,,,,點分別在上,于,則的面積為()A. B. C. D.11.已知線段AB=8cm,點C是直線AB上一點,BC=2cm,若M是AB的中點,N是BC的中點,則線段MN的長度為()A.5cm B.5cm或3cm C.7cm或3cm D.7cm12.如圖,AB∥CD,DE⊥CE,∠1=34°,則∠DCE的度數為()A.34° B.56° C.66° D.54°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在△ABC中,MN∥BC分別交AB,AC于點M,N;若AM=1,MB=2,BC=3,則MN的長為_____.14.的相反數是_____.15.如圖1,在Rt△ABC中,∠ACB=90°,點P以每秒2cm的速度從點A出發,沿折線AC﹣CB運動,到點B停止.過點P作PD⊥AB,垂足為D,PD的長y(cm)與點P的運動時間x(秒)的函數圖象如圖2所示.當點P運動5秒時,PD的長的值為_____.16.如圖,在△ABC中,∠C=90°,AC=8,BC=6,點D是AB的中點,點E在邊AC上,將△ADE沿DE翻折,使點A落在點A′處,當A′E⊥AC時,A′B=____.17.如圖,某數學興趣小組為了測量河對岸l1的兩棵古樹A、B之間的距離,他們在河這邊沿著與AB平行的直線l2上取C、D兩點,測得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則古樹A、B之間的距離為_____m.18.一個凸邊形的內角和為720°,則這個多邊形的邊數是__________________三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)在平面直角坐標系中,O為原點,點A(8,0)、點B(0,4),點C、D分別是邊OA、AB的中點.將△ACD繞點A順時針方向旋轉,得△AC′D′,記旋轉角為α.(I)如圖①,連接BD′,當BD′∥OA時,求點D′的坐標;(II)如圖②,當α=60°時,求點C′的坐標;(III)當點B,D′,C′共線時,求點C′的坐標(直接寫出結果即可).20.(6分)為看豐富學生課余文化生活,某中學組織學生進行才藝比賽,每人只能從以下五個項目中選報一項:.書法比賽,.繪畫比賽,.樂器比賽,.象棋比賽,.圍棋比賽根據學生報名的統計結果,繪制了如下尚不完整的統計圖:圖1各項報名人數扇形統計圖:圖2各項報名人數條形統計圖:根據以上信息解答下列問題:(1)學生報名總人數為人;(2)如圖1項目D所在扇形的圓心角等于;(3)請將圖2的條形統計圖補充完整;(4)學校準備從書法比賽一等獎獲得者甲、乙、丙、丁四名同學中任意選取兩名同學去參加全市的書法比賽,求恰好選中甲、乙兩名同學的概率.21.(6分)如圖,在Rt△ABC中,∠C=90°,AC=AB.求證:∠B=30°.請填空完成下列證明.證明:如圖,作Rt△ABC的斜邊上的中線CD,則CD=AB=AD().∵AC=AB,∴AC=CD=AD即△ACD是等邊三角形.∴∠A=°.∴∠B=90°﹣∠A=30°.22.(8分)4件同型號的產品中,有1件不合格品和3件合格品.從這4件產品中隨機抽取1件進行檢測,求抽到的是不合格品的概率;從這4件產品中隨機抽取2件進行檢測,求抽到的都是合格品的概率;在這4件產品中加入x件合格品后,進行如下試驗:隨機抽取1件進行檢測,然后放回,多次重復這個試驗,通過大量重復試驗后發現,抽到合格品的頻率穩定在0.95,則可以推算出x的值大約是多少?23.(8分)現有一次函數y=mx+n和二次函數y=mx2+nx+1,其中m≠0,若二次函數y=mx2+nx+1經過點(2,0),(3,1),試分別求出兩個函數的解析式.若一次函數y=mx+n經過點(2,0),且圖象經過第一、三象限.二次函數y=mx2+nx+1經過點(a,y1)和(a+1,y2),且y1>y2,請求出a的取值范圍.若二次函數y=mx2+nx+1的頂點坐標為A(h,k)(h≠0),同時二次函數y=x2+x+1也經過A點,已知﹣1<h<1,請求出m的取值范圍.24.(10分)如圖,在大樓AB正前方有一斜坡CD,坡角∠DCE=30°,樓高AB=60米,在斜坡下的點C處測得樓頂B的仰角為60°,在斜坡上的D處測得樓頂B的仰角為45°,其中點A,C,E在同一直線上.求坡底C點到大樓距離AC的值;求斜坡CD的長度.25.(10分)如圖,在平面直角坐標系中,A、B為x軸上兩點,C、D為y軸上的兩點,經過點A、C、B的拋物線的一部分C1與經過點A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封閉曲線稱為“蛋線”.已知點C的坐標為(0,),點M是拋物線C2:(<0)的頂點.(1)求A、B兩點的坐標;(2)“蛋線”在第四象限上是否存在一點P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由;(3)當△BDM為直角三角形時,求的值.26.(12分)如圖1,拋物線y=ax2+bx﹣2與x軸交于點A(﹣1,0),B(4,0)兩點,與y軸交于點C,經過點B的直線交y軸于點E(0,2).(1)求該拋物線的解析式;(2)如圖2,過點A作BE的平行線交拋物線于另一點D,點P是拋物線上位于線段AD下方的一個動點,連結PA,EA,ED,PD,求四邊形EAPD面積的最大值;(3)如圖3,連結AC,將△AOC繞點O逆時針方向旋轉,記旋轉中的三角形為△A′OC′,在旋轉過程中,直線OC′與直線BE交于點Q,若△BOQ為等腰三角形,請直接寫出點Q的坐標.27.(12分)已知關于x的一元二次方程x2﹣(m+3)x+m+2=1.(1)求證:無論實數m取何值,方程總有兩個實數根;(2)若方程兩個根均為正整數,求負整數m的值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

若比較M,N的大小關系,只需計算M-N的值即可.【詳解】解:∵M=9x2-4x+3,N=5x2+4x-2,∴M-N=(9x2-4x+3)-(5x2+4x-2)=4(x-1)2+1>0,∴M>N.故選A.【點睛】本題的主要考查了比較代數式的大小,可以讓兩者相減再分析情況.2、B【解析】

根據題意表示出襯衫的價格,利用進價的變化得出等式即可.【詳解】解:設第一批購進x件襯衫,則所列方程為:+10=.故選B.【點睛】此題主要考查了由實際問題抽象出分式方程,正確找出等量關系是解題關鍵.3、A【解析】

直接根據“上加下減,左加右減”的原則進行解答即可.【詳解】拋物線y=x2的頂點坐標為(0,0),先向左平移2個單位再向下平移1個單位后的拋物線的頂點坐標為(﹣2,﹣1),所以,平移后的拋物線的解析式為y=(x+2)2﹣1.故選:A.【點睛】本題考查了二次函數的圖象與幾何變換,熟知函數圖象平移的法則是解答本題的關鍵.4、D【解析】

根據題意可以用相應的代數式表示出去年二月份之前房價,本題得以解決.【詳解】由題意可得,去年二月份之前房價為:x÷(1﹣30%)÷(1+40%)=,故選:D.【點睛】本題考查了列代數式,解答本題的關鍵是明確題意,列出相應的代數式.5、B【解析】

根據折疊的性質可知AE=DE=3,然后根據勾股定理求CD的長,然后利用正弦公式進行計算即可.【詳解】解:由折疊性質可知:AE=DE=3∴CE=AC-AE=4-3=1在Rt△CED中,CD=故選:B【點睛】本題考查折疊的性質,勾股定理解直角三角形及正弦的求法,掌握公式正確計算是本題的解題關鍵.6、B【解析】∵①對頂角相等,故此選項正確;②若a>b>0,則<,故此選項正確;③對角線相等且互相垂直平分的四邊形是正方形,故此選項錯誤;④拋物線y=x2﹣2x與坐標軸有2個不同交點,故此選項錯誤;⑤邊長相等的多邊形內角不一定都相等,故此選項錯誤;∴從中任選一個命題是真命題的概率為:.故選:B.7、B【解析】

根據的圖象上的三點,把三點代入可以得到x1=﹣,x1=,x3=,在根據a的大小即可解題【詳解】解:∵點A(x1,﹣1)、B(x1,4)、C(x3,5)為反比例函數圖象上的三點,∴x1=﹣,x1=,x3=,∵a<1,∴a﹣1<0,∴x1>x3>x1.故選B.【點睛】此題主要考查一次函數圖象與系數的關系,解題關鍵在于把三點代入,在根據a的大小來判斷8、C【解析】∵AEAB∴△ABC∽△AED。∴SΔ∴SΔ9、A【解析】分析:A、根據方程的系數結合根的判別式,可得出△>0,由此即可得出x1≠x2,結論A正確;B、根據根與系數的關系可得出x1+x2=a,結合a的值不確定,可得出B結論不一定正確;C、根據根與系數的關系可得出x1?x2=﹣2,結論C錯誤;D、由x1?x2=﹣2,可得出x1<0,x2>0,結論D錯誤.綜上即可得出結論.詳解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,∴x1≠x2,結論A正確;B、∵x1、x2是關于x的方程x2﹣ax﹣2=0的兩根,∴x1+x2=a,∵a的值不確定,∴B結論不一定正確;C、∵x1、x2是關于x的方程x2﹣ax﹣2=0的兩根,∴x1?x2=﹣2,結論C錯誤;D、∵x1?x2=﹣2,∴x1<0,x2>0,結論D錯誤.故選A.點睛:本題考查了根的判別式以及根與系數的關系,牢記“當△>0時,方程有兩個不相等的實數根”是解題的關鍵.10、C【解析】

先利用三角函數求出BE=4m,同(1)的方法判斷出∠1=∠3,進而得出△ACQ∽△CEP,得出比例式求出PE,最后用面積的差即可得出結論;【詳解】∵,

∴CQ=4m,BP=5m,

在Rt△ABC中,sinB=,tanB=,

如圖2,過點P作PE⊥BC于E,

在Rt△BPE中,PE=BP?sinB=5m×=3m,tanB=,

∴,

∴BE=4m,CE=BC-BE=8-4m,

同(1)的方法得,∠1=∠3,

∵∠ACQ=∠CEP,

∴△ACQ∽△CEP,

∴,∴,

∴m=,

∴PE=3m=,

∴S△ACP=S△ACB-S△PCB=BC×AC-BC×PE=BC(AC-PE)=×8×(6-)=,故選C.【點睛】本題是相似形綜合題,主要考查了相似三角形的判定和性質,三角形的面積的計算方法,判斷出△ACQ∽△CEP是解題的關鍵.11、B【解析】(1)如圖1,當點C在點A和點B之間時,∵點M是AB的中點,點N是BC的中點,AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB-BN=3cm;(2)如圖2,當點C在點B的右側時,∵點M是AB的中點,點N是BC的中點,AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB+BN=5cm.綜上所述,線段MN的長度為5cm或3cm.故選B.點睛:解本題時,由于題目中告訴的是點C在直線AB上,因此根據題目中所告訴的AB和BC的大小關系要分點C在線段AB上和點C在線段AB的延長線上兩種情況分析解答,不要忽略了其中任何一種.12、B【解析】試題分析:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故選B.考點:平行線的性質.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】

∵MN∥BC,∴△AMN∽△ABC,∴,即,∴MN=1.故答案為1.14、【解析】

根據只有符號不同的兩個數互為相反數,可得答案.【詳解】的相反數是?.故答案為?.【點睛】本題考查的知識點是相反數,解題的關鍵是熟練的掌握相反數.15、2.4cm【解析】分析:根據圖2可判斷AC=3,BC=4,則可確定t=5時BP的值,利用sin∠B的值,可求出PD.詳解:由圖2可得,AC=3,BC=4,∴AB=.當t=5時,如圖所示:,此時AC+CP=5,故BP=AC+BC-AC-CP=2,∵sin∠B==,∴PD=BP·sin∠B=2×==1.2(cm).故答案是:1.2cm.點睛:本題考查了動點問題的函數圖象,勾股定理,銳角三角函數等知識,解答本題的關鍵是根據圖形得到AC、BC的長度,此題難度一般.16、或7【解析】

分兩種情況:①如圖1,作輔助線,構建矩形,先由勾股定理求斜邊AB=10,由中點的定義求出AD和BD的長,證明四邊形HFGB是矩形,根據同角的三角函數列式可以求DG和DF的長,并由翻折的性質得:∠DA'E=∠A,A'D=AD=5,由矩形性質和勾股定理可以得出結論:A'B=;②如圖2,作輔助線,構建矩形A'MNF,同理可以求出A'B的長.【詳解】解:分兩種情況:如圖1,過D作DG⊥BC與G,交A'E與F,過B作BH⊥A'E與H,D為AB的中點,BD=AB=AD,∠C=,AC=8,BC=6,AB=10,BD=AD=5,sin∠ABC=,DG=4,由翻折得:∠DA'E=∠A,A'D=AD=5,sin∠DA'E=sin∠A=.DF=3,FG=4-3=1,A'E⊥AC,BC⊥AC,A'E//BC,∠HFG+∠DGB=,∠DGB=,∠HFG=,∠EHB=,四邊形HFGB是矩形,BH=FG=1,同理得:A'E=AE=8-1=7,A'H=A'E-EH=7-6=1,在Rt△AHB中,由勾股定理得:A'B=.如圖2,過D作MN//AC,交BC與于N,過A'作A'F//AC,交BC的延長線于F,延長A'E交直線DN于M,A'E⊥AC,A'M⊥MN,A'E⊥A'F,∠M=∠MA'F=,∠ACB=,∠F=∠ACB=,四邊形MA'FN県矩形,MN=A'F,FN=A'M,由翻折得:A'D=AD=5,Rt△A'MD中,DM=3,A'M=4,FN=A'M=4,Rt△BDN中,BD=5,DN=4,BN=3,A'F=MN=DM+DN=3+4=7,BF=BN+FN=3+4=7,Rt△ABF中,由勾股定理得:A'B=;綜上所述,A'B的長為或.故答案為:或.【點睛】本題主要考查三角形翻轉后的性質,注意不同的情況需分情況討論.17、(50﹣).【解析】

過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AM=BN.通過解直角△ACM和△BCN分別求得CM、CN的長度,則易得MN=AB.【詳解】解:如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N,則AB=MN,AM=BN.在直角△ACM,∵∠ACM=45°,AM=50m,∴CM=AM=50m.∵在直角△BCN中,∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN===(m),∴MN=CM?CN=50?(m).則AB=MN=(50?)m.故答案是:(50?).【點睛】本題考查了解直角三角形的應用.解決此問題的關鍵在于正確理解題意的基礎上建立數學模型,把實際問題轉化為數學問題.18、1【解析】

設這個多邊形的邊數是n,根據多邊形的內角和公式:,列方程計算即可.【詳解】解:設這個多邊形的邊數是n根據多邊形內角和公式可得解得.故答案為:1.【點睛】此題考查的是根據多邊形的內角和,求邊數,掌握多邊形內角和公式是解決此題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(I)(10,4)或(6,4)(II)C′(6,2)(III)①C′(8,4)②C′(,﹣)【解析】

(I)如圖①,當OB∥AC′,四邊形OBC′A是平行四邊形,只要證明B、C′、D′共線即可解決問題,再根據對稱性確定D″的坐標;(II)如圖②,當α=60°時,作C′K⊥AC于K.解直角三角形求出OK,C′K即可解決問題;(III)分兩種情形分別求解即可解決問題;【詳解】解:(I)如圖①,∵A(8,0),B(0,4),∴OB=4,OA=8,∵AC=OC=AC′=4,∴當OB∥AC′,四邊形OBC′A是平行四邊形,∵∠AOB=90°,∴四邊形OBC′A是矩形,∴∠AC′B=90°,∵∠AC′D′=90°,∴B、C′、D′共線,∴BD′∥OA,∵AC=CO,BD=AD,∴CD=C′D′=OB=2,∴D′(10,4),根據對稱性可知,點D″在線段BC′上時,D″(6,4)也滿足條件.綜上所述,滿足條件的點D坐標(10,4)或(6,4).(II)如圖②,當α=60°時,作C′K⊥AC于K.在Rt△AC′K中,∵∠KAC′=60°,AC′=4,∴AK=2,C′K=2,∴OK=6,∴C′(6,2).(III)①如圖③中,當B、C′、D′共線時,由(Ⅰ)可知,C′(8,4).②如圖④中,當B、C′、D′共線時,BD′交OA于F,易證△BOF≌△AC′F,∴OF=FC′,設OF=FC′=x,在Rt△ABC′中,BC′==8,在RT△BOF中,OB=4,OF=x,BF=8﹣x,∴(8﹣x)2=42+x2,解得x=3,∴OF=FC′=3,BF=5,作C′K⊥OA于K,∵OB∥KC′,∴==,∴==,∴KC′=,KF=,∴OK=,∴C′(,﹣).【點睛】本題考查三角形綜合題、旋轉變換、矩形的判定和性質、平行線的性質、勾股定理等知識,解題的關鍵是靈活應用所學知識解決問題,學會用分類討論的思想思考問題,屬于中考壓軸題.20、(1)200;(2)54°;(3)見解析;(4)【解析】

(1)根據A的人數及所占的百分比即可求出總人數;(2)用D的人數除以總人數再乘360°即可得出答案;(3)用總人數減去A,B,D,E的人數即為C對應的人數,然后即可把條形統計圖補充完整;(4)用樹狀圖列出所有的情況,找出恰好選中甲、乙兩名同學的情況數,利用概率公式求解即可.【詳解】解:(1)學生報名總人數為(人),故答案為:200;(2)項目所在扇形的圓心角等于,故答案為:54°;(3)項目的人數為,補全圖形如下:(4)畫樹狀圖得:所有出現的等可能性結果共有12種,其中滿足條件的結果有2種.恰好選中甲、乙兩名同學的概率為.【點睛】本題主要考查扇形統計圖與條形統計圖的結合,能夠從圖表中獲取有用信息,掌握概率公式是解題的關鍵.21、直角三角形斜邊上的中線等于斜邊的一半;1.【解析】

根據直角三角形斜邊上的中線等于斜邊的一半和等邊三角形的判定與性質填空即可.【詳解】證明:如圖,作Rt△ABC的斜邊上的中線CD,則CD=AB=AD(直角三角形斜邊上的中線等于斜邊的一半),∵AC=AB,∴AC=CD=AD即△ACD是等邊三角形,∴∠A=1°,∴∠B=90°﹣∠A=30°.【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質,等邊三角形的判定與性質,重點在于邏輯思維能力的訓練.22、(1);(2);(3)x=1.【解析】

(1)用不合格品的數量除以總量即可求得抽到不合格品的概率;(2)利用獨立事件同時發生的概率等于兩個獨立事件單獨發生的概率的積即可計算;(3)根據頻率估計出概率,利用概率公式列式計算即可求得x的值.【詳解】解:(1)∵4件同型號的產品中,有1件不合格品,∴P(不合格品)=;(2)共有12種情況,抽到的都是合格品的情況有6種,P(抽到的都是合格品)==;(3)∵大量重復試驗后發現,抽到合格品的頻率穩定在0.95,∴抽到合格品的概率等于0.95,∴=0.95,解得:x=1.【點睛】本題考查利用頻率估計概率;概率公式;列表法與樹狀圖法.23、(1)y=x﹣2,y=x2++1;(2)a<;(3)m<﹣2或m>1.【解析】

(1)直接將點代入函數解析式,用待定系數法即可求解函數解析式;(2)點(2,1)代入一次函數解析式,得到n=?2m,利用m與n的關系能求出二次函數對稱軸x=1,由一次函數經過一、三象限可得m>1,確定二次函數開口向上,此時當y1>y2,只需讓a到對稱軸的距離比a+1到對稱軸的距離大即可求a的范圍.(3)將A(h,k)分別代入兩個二次函數解析式,再結合對稱抽得h=,將得到的三個關系聯立即可得到,再由題中已知?1<h<1,利用h的范圍求出m的范圍.【詳解】(1)將點(2,1),(3,1),代入一次函數y=mx+n中,,解得,∴一次函數的解析式是y=x﹣2,再將點(2,1),(3,1),代入二次函數y=mx2+nx+1,,解得,∴二次函數的解析式是.(2)∵一次函數y=mx+n經過點(2,1),∴n=﹣2m,∵二次函數y=mx2+nx+1的對稱軸是x=,∴對稱軸為x=1,又∵一次函數y=mx+n圖象經過第一、三象限,∴m>1,∵y1>y2,∴1﹣a>1+a﹣1,∴a<.(3)∵y=mx2+nx+1的頂點坐標為A(h,k),∴k=mh2+nh+1,且h=,又∵二次函數y=x2+x+1也經過A點,∴k=h2+h+1,∴mh2+nh+1=h2+h+1,∴,又∵﹣1<h<1,∴m<﹣2或m>1.【點睛】本題考點:點與函數的關系;二次函數的對稱軸與函數值關系;待定系數法求函數解析式;不等式的解法;數形結合思想是解決二次函數問題的有效方法.24、(1)坡底C點到大樓距離AC的值為20米;(2)斜坡CD的長度為80-120米.【解析】分析:(1)在直角三角形ABC中,利用銳角三角函數定義求出AC的長即可;(2)過點D作DF⊥AB于點F,則四邊形AEDF為矩形,得AF=DE,DF=AE.利用DF=AE=AC+CE求解即可.詳解:(1)在直角△ABC中,∠BAC=90°,∠BCA=60°,AB=60米,則AC=(米)答:坡底C點到大樓距離AC的值是20米.(2)過點D作DF⊥AB于點F,則四邊形AEDF為矩形,∴AF=DE,DF=AE.設CD=x米,在Rt△CDE中,DE=x米,CE=x米在Rt△BDF中,∠BDF=45°,∴BF=DF=AB-AF=60-x(米)∵DF=AE=AC+CE,∴20+x=60-x解得:x=80-120(米)故斜坡CD的長度為(80-120)米.點睛:此題考查了解直角三角形-仰角俯角問題,坡度坡角問題,熟練掌握勾股定理是解本題的關鍵.25、(1)A(,0)、B(3,0).(2)存在.S△PBC最大值為(3)或時,△BDM為直角三角形.【解析】

(1)在中令y=0,即可得到A、B兩點的坐標.(2)先用待定系數法

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論