吉林省舒蘭市2024年中考數學五模試卷含解析_第1頁
吉林省舒蘭市2024年中考數學五模試卷含解析_第2頁
吉林省舒蘭市2024年中考數學五模試卷含解析_第3頁
吉林省舒蘭市2024年中考數學五模試卷含解析_第4頁
吉林省舒蘭市2024年中考數學五模試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

吉林省舒蘭市2024年中考數學五模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在平面直角坐標系中,以A(-1,0),B(2,0),C(0,1)為頂點構造平行四邊形,下列各點中不能作為平行四邊形頂點坐標的是()A.(3,1) B.(-4,1) C.(1,-1) D.(-3,1)2.有一圓形苗圃如圖1所示,中間有兩條交叉過道AB,CD,它們為苗圃的直徑,且AB⊥CD.入口K位于中點,園丁在苗圃圓周或兩條交叉過道上勻速行進.設該園丁行進的時間為x,與入口K的距離為y,表示y與x的函數關系的圖象大致如圖2所示,則該園丁行進的路線可能是()A.A→O→D B.C→A→O→B C.D→O→C D.O→D→B→C3.截至2010年“費爾茲獎”得主中最年輕的8位數學家獲獎時的年齡分別為29,28,29,31,31,31,29,31,則由年齡組成的這組數據的中位數是()A.28 B.29 C.30 D.314.已知xa=2,xb=3,則x3a﹣2b等于()A. B.﹣1 C.17 D.725.主席在2018年新年賀詞中指出,2017年,基本醫療保險已經覆蓋1350000000人.將1350000000用科學記數法表示為()A.135×107 B.1.35×109 C.13.5×108 D.1.35×10146.等腰三角形的兩邊長分別為5和11,則它的周長為()A.21 B.21或27 C.27 D.257.化簡的結果為()A.﹣1 B.1 C. D.8.如圖,在4×4的正方形網格中,每個小正方形的邊長都為1,△AOB的三個頂點都在格點上,現將△AOB繞點O逆時針旋轉90°后得到對應的△COD,則點A經過的路徑弧AC的長為()A. B.π C.2π D.3π9.點M(1,2)關于y軸對稱點的坐標為()A.(﹣1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)10.如圖,排球運動員站在點O處練習發球,將球從O點正上方2m的A處發出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關系式y=a(x﹣k)2+h.已知球與D點的水平距離為6m時,達到最高2.6m,球網與D點的水平距離為9m.高度為2.43m,球場的邊界距O點的水平距離為18m,則下列判斷正確的是()A.球不會過網 B.球會過球網但不會出界C.球會過球網并會出界 D.無法確定二、填空題(共7小題,每小題3分,滿分21分)11.兩個反比例函數y=kx和y=1x在第一象限內的圖象如圖所示,點P在y=kx的圖象上,PC⊥x軸于點C,交12.如圖,AB為⊙O的直徑,C、D為⊙O上的點,.若∠CAB=40°,則∠CAD=_____.13.已知在Rt△ABC中,∠C=90°,BC=5,AC=12,E為線段AB的中點,D點是射線AC上的一個動點,將△ADE沿線段DE翻折,得到△A′DE,當A′D⊥AB時,則線段AD的長為_____.14.如圖,Rt△ABC的直角邊BC在x軸上,直線y=x﹣經過直角頂點B,且平分△ABC的面積,BC=3,點A在反比例函數y=圖象上,則k=_______.15.一個布袋里裝有10個只有顏色不同的球,這10個球中有m個紅球,從布袋中摸出一個球,記下顏色后放回,攪勻,再摸出一個球,通過大量重復試驗后發現,摸到紅球的頻率穩定在0.3左右,則m的值約為__________.16.計算:____________17.如圖,把一塊直角三角板的直角頂點放在直尺的一邊上,若∠1=50°,則∠2=_____°.三、解答題(共7小題,滿分69分)18.(10分)先化簡,再求值:3a(a1+1a+1)﹣1(a+1)1,其中a=1.19.(5分)如圖,在中,,平分,交于點,點在上,經過兩點,交于點,交于點.求證:是的切線;若的半徑是,是弧的中點,求陰影部分的面積(結果保留和根號).20.(8分)已知Rt△ABC,∠A=90°,BC=10,以BC為邊向下作矩形BCDE,連AE交BC于F.(1)如圖1,當AB=AC,且sin∠BEF=時,求的值;(2)如圖2,當tan∠ABC=時,過D作DH⊥AE于H,求的值;(3)如圖3,連AD交BC于G,當時,求矩形BCDE的面積21.(10分)如圖所示,在坡角為30°的山坡上有一豎立的旗桿AB,其正前方矗立一墻,當陽光與水平線成45°角時,測得旗桿AB落在坡上的影子BD的長為8米,落在墻上的影子CD的長為6米,求旗桿AB的高(結果保留根號).22.(10分)尺規作圖:用直尺和圓規作圖,不寫作法,保留痕跡.已知:如圖,線段a,h.求作:△ABC,使AB=AC,且∠BAC=∠α,高AD=h.23.(12分)已知△ABC內接于⊙O,AD平分∠BAC.(1)如圖1,求證:;(2)如圖2,當BC為直徑時,作BE⊥AD于點E,CF⊥AD于點F,求證:DE=AF;(3)如圖3,在(2)的條件下,延長BE交⊙O于點G,連接OE,若EF=2EG,AC=2,求OE的長.24.(14分)如圖,已知CD=CF,∠A=∠E=∠DCF=90°,求證:AD+EF=AE

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

作出圖形,結合圖形進行分析可得.【詳解】如圖所示:①以AC為對角線,可以畫出?AFCB,F(-3,1);②以AB為對角線,可以畫出?ACBE,E(1,-1);③以BC為對角線,可以畫出?ACDB,D(3,1),故選B.2、B【解析】【分析】觀察圖象可知園丁與入口K的距離先減小,然后再增大,但是沒有到過入口的位置,據此逐項進行分析即可得.【詳解】A.A→O→D,園丁與入口的距離逐漸增大,逐漸減小,不符合;B.C→A→O→B,園丁與入口的距離逐漸減小,然后又逐漸增大,符合;C.D→O→C,園丁與入口的距離逐漸增大,不符合;D.O→D→B→C,園丁與入口的距離先逐漸變小,然后再逐漸變大,再逐漸變小,不符合,故選B.【點睛】本題考查了動點問題的函數圖象,看懂圖形,認真分析是解題的關鍵.3、C【解析】

根據中位數的定義即可解答.【詳解】解:把這些數從小到大排列為:28,29,29,29,31,31,31,31,最中間的兩個數的平均數是:=30,則這組數據的中位數是30;故本題答案為:C.【點睛】此題考查了中位數,中位數是將一組數據從小到大(或從大到小)重新排列后,最中間的那個數(最中間兩個數的平均數),叫做這組數據的中位數.4、A【解析】∵xa=2,xb=3,∴x3a?2b=(xa)3÷(xb)2=8÷9=,故選A.5、B【解析】

科學記數法的表示形式為a×的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】將1350000000用科學記數法表示為:1350000000=1.35×109,故選B.【點睛】本題考查科學記數法的表示方法.科學記數法的表示形式為a×的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值及n的值.6、C【解析】試題分析:分類討論:當腰取5,則底邊為11,但5+5<11,不符合三角形三邊的關系;當腰取11,則底邊為5,根據等腰三角形的性質得到另外一邊為11,然后計算周長.解:當腰取5,則底邊為11,但5+5<11,不符合三角形三邊的關系,所以這種情況不存在;當腰取11,則底邊為5,則三角形的周長=11+11+5=1.故選C.考點:等腰三角形的性質;三角形三邊關系.7、B【解析】

先把分式進行通分,把異分母分式化為同分母分式,再把分子相加,即可求出答案.【詳解】解:.故選B.8、A【解析】

根據旋轉的性質和弧長公式解答即可.【詳解】解:∵將△AOB繞點O逆時針旋轉90°后得到對應的△COD,∴∠AOC=90°,∵OC=3,∴點A經過的路徑弧AC的長==,故選:A.【點睛】此題考查弧長計算,關鍵是根據旋轉的性質和弧長公式解答.9、A【解析】

關于y軸對稱的點的坐標特征是縱坐標不變,橫坐標變為相反數.【詳解】點M(1,2)關于y軸對稱點的坐標為(-1,2)【點睛】本題考查關于坐標軸對稱的點的坐標特征,牢記關于坐標軸對稱的點的性質是解題的關鍵.10、C【解析】分析:(1)將點A(0,2)代入求出a的值;分別求出x=9和x=18時的函數值,再分別與2.43、0比較大小可得.詳解:根據題意,將點A(0,2)代入得:36a+2.6=2,解得:∴y與x的關系式為當x=9時,∴球能過球網,當x=18時,∴球會出界.故選C.點睛:考查二次函數的應用題,求范圍的問題,可以利用臨界點法求出自變量的值,根據題意確定范圍.二、填空題(共7小題,每小題3分,滿分21分)11、①②④.【解析】①△ODB與△OCA的面積相等;正確,由于A、B在同一反比例函數圖象上,則兩三角形面積相等,都為12②四邊形PAOB的面積不會發生變化;正確,由于矩形OCPD、三角形ODB、三角形OCA為定值,則四邊形PAOB的面積不會發生變化.③PA與PB始終相等;錯誤,不一定,只有當四邊形OCPD為正方形時滿足PA=PB.④當點A是PC的中點時,點B一定是PD的中點.正確,當點A是PC的中點時,k=2,則此時點B也一定是PD的中點.故一定正確的是①②④12、25°【解析】

連接BC,BD,根據直徑所對的圓周角是直角,得∠ACB=90°,根據同弧或等弧所對的圓周角相等,得∠ABD=∠CBD,從而可得到∠BAD的度數.【詳解】如圖,連接BC,BD,∵AB為⊙O的直徑,∴∠ACB=90°,∵∠CAB=40°,∴∠ABC=50°,∵,∴∠ABD=∠CBD=∠ABC=25°,∴∠CAD=∠CBD=25°.故答案為25°.【點睛】本題考查了圓周角定理及直徑所對的圓周角是直角的知識點,解題的關鍵是正確作出輔助線.13、或.【解析】

①延長A'D交AB于H,則A'H⊥AB,然后根據勾股定理算出AB,推斷出△ADH∽△ABC,即可解答此題②同①的解題思路一樣【詳解】解:分兩種情況:①如圖1所示:設AD=x,延長A'D交AB于H,則A'H⊥AB,∴∠AHD=∠C=90°,由勾股定理得:AB==13,∵∠A=∠A,∴△ADH∽△ABC,∴,即,解得:DH=x,AH=x,∵E是AB的中點,∴AE=AB=,∴HE=AE﹣AH=﹣x,由折疊的性質得:A'D=AD=x,A'E=AE=,∴sin∠A=sin∠A'=,解得:x=;②如圖2所示:設AD=A'D=x,∵A'D⊥AB,∴∠A'HE=90°,同①得:A'E=AE=,DH=x,∴A'H=A'D﹣DH=x﹣=x,∴cos∠A=cos∠A'=,解得:x=;綜上所述,AD的長為或.故答案為或.【點睛】此題考查了勾股定理,三角形相似,關鍵在于做輔助線14、1【解析】分析:根據題意得出點B的坐標,根據面積平分得出點D的坐標,利用三角形相似可得點A的坐標,從而求出k的值.詳解:根據一次函數可得:點B的坐標為(1,0),∵BD平分△ABC的面積,BC=3∴點D的橫坐標1.5,∴點D的坐標為,∵DE:AB=1:1,∴點A的坐標為(1,1),∴k=1×1=1.點睛:本題主要考查的是反比例函數的性質以及三角形相似的應用,屬于中等難度的題型.得出點D的坐標是解決這個問題的關鍵.15、3【解析】

在同樣條件下,大量重復實驗時,隨機事件發生的頻率逐漸穩定在概率附近,可以從比例關系入手,列出等式解答.【詳解】解:根據題意得,=0.3,解得m=3.故答案為:3.【點睛】本題考查隨機事件概率的意義,關鍵是要知道在同樣條件下,大量重復實驗時,隨機事件發生的頻率逐漸穩定在概率附近.16、y【解析】

根據冪的乘方和同底數冪相除的法則即可解答.【詳解】【點睛】本題考查了冪的乘方和同底數冪相除,熟練掌握:冪的乘方,底數不變,指數相乘的法則及同底數冪相除,底數不變,指數相減是關鍵.17、40【解析】如圖,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°,故答案為:40.三、解答題(共7小題,滿分69分)18、2【解析】試題分析:首先根據單項式乘以多項式的法則以及完全平方公式將括號去掉,然后再進行合并同類項,最后將a的值代入化簡后的式子得出答案.試題解析:解:原式=3a3+6a1+3a﹣1a1﹣4a﹣1=3a3+4a1﹣a﹣1,當a=1時,原式=14+16﹣1﹣1=2.19、(1)證明見解析;(2)【解析】

(1)連接OD,根據角平分線的定義和等腰三角形的性質可得∠ADO=∠CAD,即可證明OD//AC,進而可得∠ODB=90°,即可得答案;(2)根據圓周角定理可得弧弧弧,即可證明∠BOD=60°,在中,利用∠BOD的正切值可求出BD的長,利用S陰影=S△BOD-S扇形DOE即可得答案.【詳解】(1)連接∵平分,∴,∵,∴,∴,∴OD//AC,∴,∴又是的半徑,∴是的切線(2)由題意得∵是弧的中點∴弧弧∵∴弧弧∴弧弧弧∴在中∵∴.【點睛】本題考查的是切線的判定、圓周角定理及扇形面積,要證某線是圓的切線,已知此線過圓上某點,連接圓心和這點(即為半徑),再證垂直即可;在同圓或等圓中,同弧或等弧所對的圓周角相等,都定義這條弧所對的圓心角的一半.熟練掌握相關定理及公式是解題關鍵.20、(1);(2)80;(3)100.【解析】

(1)過A作AK⊥BC于K,根據sin∠BEF=得出,設FK=3a,AK=5a,可求得BF=a,故;(2)過A作AK⊥BC于K,延長AK交ED于G,則AG⊥ED,得△EGA∽△EHD,利用相似三角形的性質即可求出;(3)延長AB、ED交于K,延長AC、ED交于T,根據相似三角形的性質可求出BE=ED,故可求出矩形的面積.【詳解】解:(1)過A作AK⊥BC于K,∵sin∠BEF=,sin∠FAK=,∴,設FK=3a,AK=5a,∴AK=4a,∵AB=AC,∠BAC=90°,∴BK=CK=4a,∴BF=a,又∵CF=7a,∴(2)過A作AK⊥BC于K,延長AK交ED于G,則AG⊥ED,∵∠AGE=∠DHE=90°,∴△EGA∽△EHD,∴,∴,其中EG=BK,∵BC=10,tan∠ABC=,cos∠ABC=,∴BA=BC·cos∠ABC=,BK=BA·cos∠ABC=∴EG=8,另一方面:ED=BC=10,∴EH·EA=80(3)延長AB、ED交于K,延長AC、ED交于T,∵BC∥KT,,∴,同理:∵FG2=BF·CG∴,∴ED2=KE·DT∴,又∵△KEB∽△CDT,∴,∴KE·DT=BE2,∴BE2=ED2∴BE=ED∴【點睛】此題主要考查相似三角形的判定與性質,解題的關鍵根據題意作出輔助線再進行求解.21、旗桿AB的高為(4+1)m.【解析】試題分析:過點C作CE⊥AB于E,過點B作BF⊥CD于F.在Rt△BFD中,分別求出DF、BF的長度.在Rt△ACE中,求出AE、CE的長度,繼而可求得AB的長度.試題解析:解:過點C作CE⊥AB于E,過點B作BF⊥CD于F,過點B作BF⊥CD于F.在Rt△BFD中,∵∠DBF=30°,sin∠DBF==,cos∠DBF==.∵BD=8,∴DF=4,BF=.∵AB∥CD,CE⊥AB,BF⊥CD,∴四邊形BFCE為矩形,∴BF=CE=4,CF=BE=CD﹣DF=1.在Rt△ACE中,∠ACE=45°,∴AE=CE=4,∴AB=4+1(m).答:旗桿AB的高為(4+1)m.22、見解析【解析】

作∠CAB=∠α,再作∠CAB的平分線,在角平分線上截取AD=h,可得點D,過點D作AD的垂線,從而得出△ABC.【詳解】解:如圖所示,△ABC即為所求.【點睛】考查作圖-復雜作圖,掌握做一個角等于已知角、作角平分線及過直線上一點作已知直線的垂線的基本作圖和等腰三角形的性質是解題的關鍵.23、(1)證明見解析;(1)證明見解析;(3)1.【解析】

(1)連接OB、OC、OD,根據圓心角與圓周角的性質得∠BOD=1∠BAD,∠COD=1∠CAD,又AD平分∠BAC,得∠BOD=∠COD,再根據圓周角相等所對的弧相等得出結論.(1)過點O作OM⊥AD于點M,又一組角相等,再根據平行線的性質得出對應邊成比例,進而得出結論;(3)延長EO交AB于點H,連接CG,連接OA,BC為⊙O直徑,則∠G=∠CFE=∠FEG=90°,四邊形CFEG是矩形,得EG=CF,又AD平分∠BAC,再根據鄰補角與余角的性質可得∠BAF=∠ABE,∠ACF=∠CAF,AE=BE,AF=CF,再根據直角三角形的三角函數計算出邊的長,根據“角角邊”證明出△HBO∽△ABC,根據相似三角形的性質得出對應邊成比例,進而得出結論.【詳解】(1)如圖1,連接OB、OC、OD,∵∠BAD和∠BOD是所對的圓周角和圓心角,∠CAD和∠COD是所對的圓周角和圓心角,∴∠BOD=1∠BAD,∠COD=1∠CAD,∵AD平分∠BAC,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論