吉林省長春市綠園區2024年畢業升學考試模擬卷數學卷含解析_第1頁
吉林省長春市綠園區2024年畢業升學考試模擬卷數學卷含解析_第2頁
吉林省長春市綠園區2024年畢業升學考試模擬卷數學卷含解析_第3頁
吉林省長春市綠園區2024年畢業升學考試模擬卷數學卷含解析_第4頁
吉林省長春市綠園區2024年畢業升學考試模擬卷數學卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

吉林省長春市綠園區2024年畢業升學考試模擬卷數學卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,直線y=3x+6與x,y軸分別交于點A,B,以OB為底邊在y軸右側作等腰△OBC,將點C向左平移5個單位,使其對應點C′恰好落在直線AB上,則點C的坐標為()A.(3,3) B.(4,3) C.(﹣1,3) D.(3,4)2.下列“數字圖形”中,既是軸對稱圖形,又是中心對稱圖形的有()A.1個B.2個C.3個D.4個3.如圖,在△ABC中,點D在BC上,DE∥AC,DF∥AB,下列四個判斷中不正確的是()A.四邊形AEDF是平行四邊形B.若∠BAC=90°,則四邊形AEDF是矩形C.若AD平分∠BAC,則四邊形AEDF是矩形D.若AD⊥BC且AB=AC,則四邊形AEDF是菱形4.若分式的值為0,則x的值為()A.-2 B.0 C.2 D.±25.自1993年起,聯合國將每年的3月11日定為“世界水日”,宗旨是喚起公眾的節水意識,加強水資源保護.某校在開展“節約每一滴水”的活動中,從初三年級隨機選出10名學生統計出各自家庭一個月的節約用水量,有關數據整理如下表.節約用水量(單位:噸)11.11.411.5家庭數46531這組數據的中位數和眾數分別是()A.1.1,1.1; B.1.4,1.1; C.1.3,1.4; D.1.3,1.1.6.-3的倒數是()A.3 B.13 C.-17.如圖①是半徑為2的半圓,點C是弧AB的中點,現將半圓如圖②方式翻折,使得點C與圓心O重合,則圖中陰影部分的面積是()A. B.﹣ C.2+ D.2﹣8.如圖,將△OAB繞O點逆時針旋轉60°得到△OCD,若OA=4,∠AOB=35°,則下列結論錯誤的是()A.∠BDO=60° B.∠BOC=25° C.OC=4 D.BD=49.在平面直角坐標系xOy中,四條拋物線如圖所示,其解析式中的二次項系數一定小于1的是()A.y1 B.y2 C.y3 D.y410.若關于x的一元二次方程x2﹣2x+m=0沒有實數根,則實數m的取值是()A.m<1 B.m>﹣1 C.m>1 D.m<﹣1二、填空題(共7小題,每小題3分,滿分21分)11.如圖,圓錐底面圓心為O,半徑OA=1,頂點為P,將圓錐置于平面上,若保持頂點P位置不變,將圓錐順時針滾動三周后點A恰好回到原處,則圓錐的高OP=_____.12.如圖,在3×3的正方形網格中,點A,B,C,D,E,F,G都是格點,從C,D,E,F,G五個點中任意取一點,以所取點及AB為頂點畫三角形,所畫三角形時等腰三角形的概率是_____.13.在實數范圍內分解因式:x2y﹣2y=_____.14.已知,,,是成比例的線段,其中,,,則_______.15.若2a﹣b=5,a﹣2b=4,則a﹣b的值為________.16.如圖,點A(3,n)在雙曲線y=上,過點A作AC⊥x軸,垂足為C.線段OA的垂直平分線交OC于點B,則△ABC周長的值是.17.如圖,在平面直角坐標系中,四邊形OABC的頂點O是坐標原點,點A的坐標(6,0),B的坐標(0,8),點C的坐標(﹣2,4),點M,N分別為四邊形OABC邊上的動點,動點M從點O開始,以每秒1個單位長度的速度沿O→A→B路線向終點B勻速運動,動點N從O點開始,以每秒2個單位長度的速度沿O→C→B→A路線向終點A勻速運動,點M,N同時從O點出發,當其中一點到達終點后,另一點也隨之停止運動,設動點運動的時間為t秒(t>0),△OMN的面積為S.則:AB的長是_____,BC的長是_____,當t=3時,S的值是_____.三、解答題(共7小題,滿分69分)18.(10分)近幾年“霧霾”成為全社會關注的話題某校環保志愿者小組對該市2018年空氣質量進行調查,從全年365天中隨機抽查了50天的空氣質量指數(AQI),得到以下數據:43、62、80、78、46、78、23、59、32、78、86、125、98、116、86、69、28、43、58、87、75、116、178、146、57、26、43、59、77、103、126、159、201、289、315、253、196、102、93、72、56、43、39、44、47、34、31、29、43、1.(1)請你完成如下的統計表;AQI0~5051~100101~150151~200201~250300以上質量等級A(優)B(良)C(輕度污染)D(中度污染)E(重度污染)F(嚴重污染)天數(2)請你根據題中所給信息繪制該市2018年空氣質量等級條形統計圖;(3)請你估計該市全年空氣質量等級為“重度污染”和“嚴重污染”的天數.19.(5分)某報社為了解市民對“社會主義核心價值觀”的知曉程度,采取隨機抽樣的方式進行問卷調查,調查結果分為“A.非常了解”、“B.了解”、“C.基本了解”三個等級,并根據調查結果繪制了如下兩幅不完整的統計圖.(1)這次調查的市民人數為________人,m=________,n=________;(2)補全條形統計圖;(3)若該市約有市民100000人,請你根據抽樣調查的結果,估計該市大約有多少人對“社會主義核心價值觀”達到“A.非常了解”的程度.20.(8分)如圖,△ABC中,AB=8厘米,AC=16厘米,點P從A出發,以每秒2厘米的速度向B運動,點Q從C同時出發,以每秒3厘米的速度向A運動,其中一個動點到端點時,另一個動點也相應停止運動,設運動的時間為t.⑴用含t的代數式表示:AP=,AQ=.⑵當以A,P,Q為頂點的三角形與△ABC相似時,求運動時間是多少?21.(10分)已知直線y=mx+n(m≠0,且m,n為常數)與雙曲線y=(k<0)在第一象限交于A,B兩點,C,D是該雙曲線另一支上兩點,且A、B、C、D四點按順時針順序排列.(1)如圖,若m=﹣,n=,點B的縱坐標為,①求k的值;②作線段CD,使CD∥AB且CD=AB,并簡述作法;(2)若四邊形ABCD為矩形,A的坐標為(1,5),①求m,n的值;②點P(a,b)是雙曲線y=第一象限上一動點,當S△APC≥24時,則a的取值范圍是.22.(10分)如圖,已知AB是⊙O的弦,C是的中點,AB=8,AC=,求⊙O半徑的長.23.(12分)有大小兩種貨車,3輛大貨車與4輛小貨車一次可以運貨18噸,2輛大貨車與6輛小貨車一次可以運貨17噸.請問1輛大貨車和1輛小貨車一次可以分別運貨多少噸?目前有33噸貨物需要運輸,貨運公司擬安排大小貨車共計10輛,全部貨物一次運完,其中每輛大貨車一次運費花費130元,每輛小貨車一次運貨花費100元,請問貨運公司應如何安排車輛最節省費用?24.(14分)規定:不相交的兩個函數圖象在豎直方向上的最短距離為這兩個函數的“親近距離”(1)求拋物線y=x2﹣2x+3與x軸的“親近距離”;(2)在探究問題:求拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”的過程中,有人提出:過拋物線的頂點向x軸作垂線與直線相交,則該問題的“親近距離”一定是拋物線頂點與交點之間的距離,你同意他的看法嗎?請說明理由.(3)若拋物線y=x2﹣2x+3與拋物線y=+c的“親近距離”為,求c的值.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】令x=0,y=6,∴B(0,6),∵等腰△OBC,∴點C在線段OB的垂直平分線上,∴設C(a,3),則C'(a-5,3),∴3=3(a-5)+6,解得a=4,∴C(4,3).故選B.點睛:掌握等腰三角形的性質、函數圖像的平移.2、C【解析】

根據軸對稱圖形與中心對稱圖形的概念判斷即可.【詳解】第一個圖形不是軸對稱圖形,是中心對稱圖形;第二、三、四個圖形是軸對稱圖形,也是中心對稱圖形;故選:C.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.3、C【解析】A選項,∵在△ABC中,點D在BC上,DE∥AC,DF∥AB,∴DE∥AF,DF∥AE,∴四邊形AEDF是平行四邊形;即A正確;B選項,∵四邊形AEDF是平行四邊形,∠BAC=90°,∴四邊形AEDF是矩形;即B正確;C選項,因為添加條件“AD平分∠BAC”結合四邊形AEDF是平行四邊形只能證明四邊形AEDF是菱形,而不能證明四邊形AEDF是矩形;所以C錯誤;D選項,因為由添加的條件“AB=AC,AD⊥BC”可證明AD平分∠BAC,從而可通過證∠EAD=∠CAD=∠EDA證得AE=DE,結合四邊形AEDF是平行四邊形即可得到四邊形AEDF是菱形,所以D正確.故選C.4、C【解析】由題意可知:,解得:x=2,故選C.5、D【解析】分析:中位數要把數據按從小到大的順序排列,位于最中間的一個數或兩個數的平均數為中位數,眾數是一組數據中出現次數最多的數據,注意眾數可以不止一個.詳解:這組數據的中位數是;這組數據的眾數是1.1.故選D.點睛:本題屬于基礎題,考查了確定一組數據的中位數和眾數的能力,要明確定義,一些學生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項,注意找中位數的時候一定要先排好順序,然后再根據奇數和偶數個來確定中位數,如果數據有奇數個,則正中間的數字即為所求,如果是偶數個則找中間兩位數的平均數.6、C【解析】

由互為倒數的兩數之積為1,即可求解.【詳解】∵-3×-13=1,∴故選C7、D【解析】

連接OC交MN于點P,連接OM、ON,根據折疊的性質得到OP=OM,得到∠POM=60°,根據勾股定理求出MN,結合圖形計算即可.【詳解】解:連接OC交MN于點P,連接OM、ON,由題意知,OC⊥MN,且OP=PC=1,在Rt△MOP中,∵OM=2,OP=1,∴cos∠POM==,AC==,∴∠POM=60°,MN=2MP=2,∴∠AOB=2∠AOC=120°,則圖中陰影部分的面積=S半圓-2S弓形MCN=×π×22-2×(-×2×1)=2-π,故選D.【點睛】本題考查了軸對稱的性質的運用、勾股定理的運用、三角函數值的運用、扇形的面積公式的運用、三角形的面積公式的運用,解答時運用軸對稱的性質求解是關鍵.8、D【解析】

由△OAB繞O點逆時針旋轉60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,據此可判斷C;由△AOC、△BOD是等邊三角形可判斷A選項;由∠AOB=35°,∠AOC=60°可判斷B選項,據此可得答案.【詳解】解:∵△OAB繞O點逆時針旋轉60°得到△OCD,

∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C選項正確;

則△AOC、△BOD是等邊三角形,∴∠BDO=60°,故A選項正確;

∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B選項正確.

故選D.【點睛】本題考查旋轉的性質,解題的關鍵是掌握旋轉的性質:①對應點到旋轉中心的距離相等.②對應點與旋轉中心所連線段的夾角等于旋轉角.③旋轉前、后的圖形全等及等邊三角形的判定和性質.9、A【解析】

由圖象的點的坐標,根據待定系數法求得解析式即可判定.【詳解】由圖象可知:拋物線y1的頂點為(-2,-2),與y軸的交點為(0,1),根據待定系數法求得y1=(x+2)2-2;拋物線y2的頂點為(0,-1),與x軸的一個交點為(1,0),根據待定系數法求得y2=x2-1;拋物線y3的頂點為(1,1),與y軸的交點為(0,2),根據待定系數法求得y3=(x-1)2+1;拋物線y4的頂點為(1,-3),與y軸的交點為(0,-1),根據待定系數法求得y4=2(x-1)2-3;綜上,解析式中的二次項系數一定小于1的是y1故選A.【點睛】本題考查了二次函數的圖象,二次函數的性質以及待定系數法求二次函數的解析式,根據點的坐標求得解析式是解題的關鍵.10、C【解析】試題解析:關于的一元二次方程沒有實數根,,解得:故選C.二、填空題(共7小題,每小題3分,滿分21分)11、2【解析】

先利用圓的周長公式計算出PA的長,然后利用勾股定理計算PO的長.【詳解】解:根據題意得2π×PA=3×2π×1,所以PA=3,所以圓錐的高OP=PA故答案為22【點睛】本題考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.12、.【解析】

找出從C,D,E,F,G五個點中任意取一點組成等腰三角形的個數,再根據概率公式即可得出結論.【詳解】∵從C,D,E,F,G五個點中任意取一點共有5種情況,其中A、B、C;A、B、F兩種取法,可使這三定組成等腰三角形,∴所畫三角形時等腰三角形的概率是,故答案是:.【點睛】考查的是概率公式,熟記隨機事件A的概率P(A)=事件A可能出現的結果數與所有可能出現的結果數的商是解答此題的關鍵.13、y(x+)(x﹣)【解析】

先提取公因式y后,再把剩下的式子寫成x2-()2,符合平方差公式的特點,可以繼續分解.【詳解】x2y-2y=y(x2-2)=y(x+)(x-).故答案為y(x+)(x-).【點睛】本題考查實數范圍內的因式分解,因式分解的步驟為:一提公因式;二看公式.在實數范圍內進行因式分解的式子的結果一般要分到出現無理數為止.14、【解析】

如果其中兩條線段的乘積等于另外兩條線段的乘積,則四條線段叫成比例線段.根據定義ad=cb,將a,b及c的值代入即可求得d.【詳解】已知a,b,c,d是成比例線段,根據比例線段的定義得:ad=cb,代入a=3,b=2,c=6,解得:d=4,則d=4cm.故答案為:4【點睛】本題主要考查比例線段的定義.要注意考慮問題要全面.15、1.【解析】試題分析:把這兩個方程相加可得1a-1b=9,兩邊同時除以1可得a-b=1.考點:整體思想.16、2.【解析】

先求出點A的坐標,根據點的坐標的定義得到OC=3,AC=2,再根據線段垂直平分線的性質可知AB=OB,由此推出△ABC的周長=OC+AC.【詳解】由點A(3,n)在雙曲線y=上得,n=2.∴A(3,2).∵線段OA的垂直平分線交OC于點B,∴OB=AB.則在△ABC中,AC=2,AB+BC=OB+BC=OC=3,∴△ABC周長的值是2.17、10,1,1【解析】

作CD⊥x軸于D,CE⊥OB于E,由勾股定理得出AB=10,OC==1,求出BE=OB﹣OE=4,得出OE=BE,由線段垂直平分線的性質得出BC=OC=1;當t=3時,N到達C點,M到達OA的中點,OM=3,ON=OC=1,由三角形面積公式即可得出△OMN的面積.【詳解】解:作CD⊥x軸于D,CE⊥OB于E,如圖所示:由題意得:OA=1,OB=8,∵∠AOB=90°,∴AB==10;∵點C的坐標(﹣2,4),∴OC==1,OE=4,∴BE=OB﹣OE=4,∴OE=BE,∴BC=OC=1;當t=3時,N到達C點,M到達OA的中點,OM=3,ON=OC=1,∴△OMN的面積S=×3×4=1;故答案為:10,1,1.【點睛】本題考查了勾股定理、坐標與圖形性質、線段垂直平分線的性質、三角形面積公式等知識;熟練掌握勾股定理是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)補全統計表見解析;(2)該市2018年空氣質量等級條形統計圖見解析;(3)29天.【解析】

(1)由已知數據即可得;(2)根據統計表作圖即可得;(3)全年365天乘以樣本中“重度污染”和“嚴重污染”的天數和所占比例.【詳解】(1)補全統計表如下:AQI0~5051~100101~150151~200201~250300以上質量等級A(優)B(良)C(輕度污染)D(中度污染)E(重度污染)F(嚴重污染)天數16207331(2)該市2018年空氣質量等級條形統計圖如下:(3)估計該市全年空氣質量等級為“重度污染”和“嚴重污染”的天數為365×≈29天.【點睛】本題考查了條形統計圖的應用與用樣本估計總體.讀懂統計圖,從統計圖中得到必要的信息是解決問題的關鍵,條形統計圖能清楚地表示出每個項目的數據.19、(1)500,12,32;(2)補圖見解析;(3)該市大約有32000人對“社會主義核心價值觀”達到“A.非常了解”的程度.【解析】

(1)根據項目B的人數以及百分比,即可得到這次調查的市民人數,據此可得項目A,C的百分比;(2)根據對“社會主義核心價值觀”達到“A.非常了解”的人數為:32%×500=160,補全條形統計圖;(3)根據全市總人數乘以A項目所占百分比,即可得到該市對“社會主義核心價值觀”達到“A非常了解”的程度的人數.【詳解】試題分析:試題解析:(1)280÷56%=500人,60÷500=12%,1﹣56%﹣12%=32%,(2)對“社會主義核心價值觀”達到“A.非常了解”的人數為:32%×500=160,補全條形統計圖如下:(3)100000×32%=32000(人),答:該市大約有32000人對“社會主義核心價值觀”達到“A.非常了解”的程度.20、(1)AP=2t,AQ=16﹣3t;(2)運動時間為秒或1秒.【解析】

(1)根據路程=速度時間,即可表示出AP,AQ的長度.(2)此題應分兩種情況討論.(1)當△APQ∽△ABC時;(2)當△APQ∽△ACB時.利用相似三角形的性質求解即可.【詳解】(1)AP=2t,AQ=16﹣3t.(2)∵∠PAQ=∠BAC,∴當時,△APQ∽△ABC,即,解得當時,△APQ∽△ACB,即,解得t=1.∴運動時間為秒或1秒.【點睛】考查相似三角形的判定與性質,掌握相似三角形的判定定理與性質定理是解題的關鍵.注意不要漏解.21、(1)①k=5;②見解析,由此AO交雙曲線于點C,延長BO交雙曲線于點D,線段CD即為所求;(2)①;②0<a<1或a>5【解析】

(1)①求出直線的解析式,利用待定系數法即可解決問題;②如圖,由此AO交雙曲線于點C,延長BO交雙曲線于點D,線段CD即為所求;(2)①求出A,B兩點坐標,利用待定系數法即可解決問題;②分兩種情形求出△PAC的面積=24時a的值,即可判斷.【詳解】(1)①∵,,∴直線的解析式為,∵點B在直線上,縱坐標為,∴,解得x=2∴,∴;②如下圖,由此AO交雙曲線于點C,延長BO交雙曲線于點D,線段CD即為所求;(2)①∵點在上,∴k=5,∵四邊形ABCD是矩形,∴OA=OB=OC=OD,∴A,B關于直線y=x對稱,∴,則有:,解得;②如下圖,當點P在點A的右側時,作點C關于y軸的對稱點C′,連接AC,AC′,PC,PC′,PA.∵A,C關于原點對稱,,∴,∵,當時,∴,∴,∴a=5或(舍棄),當點P在點A的左側時,同法可得a=1,∴滿足條件的a的范圍為或.【點睛】本題屬于反比例函數與一次函數的綜合問題,熟練掌握待定系數法解函數解析式以及交點坐標的求法是解決本題的關鍵.22、5【解析】試題分析:連接OC交AB于D,連接OA,由垂徑定理得OD垂直平分AB,設⊙O的半徑為r,在△ACD中,利用勾股定理求得CD=2,在△OAD中,由OA2=OD2+AD2,代入相關數量求解即可得.試題解析:連接OC交AB于D,連接OA,由垂徑定理得OD垂直平分AB,設⊙O的半徑為r,在△ACD中,CD2+AD2=AC2,CD=2,在△OAD中,OA2=OD2+AD2,r2=(r-2)2+16,解得r=5,∴☉O的半徑為5.23、(1)1輛大貨車一次可以運貨4噸,1輛小貨車一次可以運貨噸;(2)貨運公司應安排大貨車8輛時,小貨車2輛時最節省費用.【解析】

(1)設1輛大貨車和1輛小貨車一次可以分別運貨噸和噸,根據“3輛大貨車與4輛小貨車一次可以運貨18噸、2輛大貨車與6輛小貨車一次可以運貨17噸”列方程組求解可得;(2)因運輸33噸且用10輛車一次運完,故10輛車所運貨不低于10噸,所以列不等式,大貨車運費高于小貨車,故用大貨車少費用就小進行安排即可.【詳解】(1)解:設1輛大貨車一次可以運貨x噸,1輛小貨車一次可以運貨y噸,依題可得:

,

解得:.

答:1輛大貨車一次可以運貨4噸,1輛小貨車一次可以運貨噸.

(2)解:設大貨車有m輛,則小貨車10-m輛,依題可得:

4m+(10-m)≥33

m≥0

10-m≥0

解得:≤m≤10,

∴m=8,9,10;

∴當大貨車8輛時,則小貨車2輛;

當大貨車9輛時,則小貨車1輛;

當大貨車10輛時,則小貨車0輛;

設運費為W=130m+100(10-m)=30m+1000,

∵k=30〉0,

∴W隨x的增大而增大,

∴當m=8時,運費最少,

∴W=130×8+100×2=1240(元),

答:貨運

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論