




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省泰興市振宇外國語校2024屆中考數學考試模擬沖刺卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.某市今年1月份某一天的最高氣溫是3℃,最低氣溫是—4℃,那么這一天的最高氣溫比最低氣溫高A.—7℃ B.7℃ C.—1℃ D.1℃2.如圖,將函數y=(x﹣2)2+1的圖象沿y軸向上平移得到一條新函數的圖象,其中點A(1,m),B(4,n)平移后的對應點分別為點A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數表達式是()A.y=(x﹣2)2-2 B.y=(x﹣2)2+7C.y=(x﹣2)2-5 D.y=(x﹣2)2+43.如圖,△ABC是⊙O的內接三角形,∠BOC=120°,則∠A等于()A.50° B.60° C.55° D.65°4.如果關于x的方程x2﹣x+1=0有實數根,那么k的取值范圍是()A.k>0 B.k≥0 C.k>4 D.k≥45.下列方程中有實數解的是()A.x4+16=0 B.x2﹣x+1=0C. D.6.1cm2的電子屏上約有細菌135000個,135000用科學記數法表示為()A.0.135×106 B.1.35×105 C.13.5×104 D.135×1037.若x是2的相反數,|y|=3,則的值是()A.﹣2 B.4 C.2或﹣4 D.﹣2或48.從1、2、3、4、5、6這六個數中隨機取出一個數,取出的數是3的倍數的概率是()A. B. C. D.9.如圖所示,從☉O外一點A引圓的切線AB,切點為B,連接AO并延長交圓于點C,連接BC,已知∠A=26°,則∠ACB的度數為()A.32° B.30° C.26° D.13°10.如圖,在Rt△ABC中,∠ACB=90°,CD是AB邊上的中線,AC=8,BC=6,則∠ACD的正切值是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,點A在雙曲線上,AB⊥x軸于B,且△AOB的面積S△AOB=2,則k=______.12.如圖,已知l1∥l2∥l3,相鄰兩條平行直線間的距離相等,若等腰直角三角形ABC的直角頂點C在l1上,另兩個頂點A,B分別在l3,l2上,則sinα的值是_____.13.如圖,在直角坐標系中,正方形的中心在原點O,且正方形的一組對邊與x軸平行,點P(3a,a)是反比例函數(k>0)的圖象上與正方形的一個交點.若圖中陰影部分的面積等于9,則這個反比例函數的解析式為▲.14.函數y=中,自變量x的取值范圍是_____.15.如圖,點G是△ABC的重心,CG的延長線交AB于D,GA=5cm,GC=4cm,GB=3cm,將△ADG繞點D旋轉180°得到△BDE,△ABC的面積=_____cm1.16.如圖,正方形ABCD的邊長是16,點E在邊AB上,AE=3,點F是邊BC上不與點B、C重合的一個動點,把△EBF沿EF折疊,點B落在B′處,若△CDB′恰為等腰三角形,則DB′的長為.17.國家游泳中心“水立方”是奧運會標志性建筑之一,其工程占地面積約為62800m2,將62800用科學記數法表示為_____.三、解答題(共7小題,滿分69分)18.(10分)已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點,與y軸相交于點C,經過點A的直線y=﹣3x+b與拋物線的另一個交點為D.(1)若點D的橫坐標為2,求拋物線的函數解析式;(2)若在第三象限內的拋物線上有點P,使得以A、B、P為頂點的三角形與△ABC相似,求點P的坐標;(3)在(1)的條件下,設點E是線段AD上的一點(不含端點),連接BE.一動點Q從點B出發,沿線段BE以每秒1個單位的速度運動到點E,再沿線段ED以每秒2319.(5分)如圖,已知CD=CF,∠A=∠E=∠DCF=90°,求證:AD+EF=AE20.(8分)校車安全是近幾年社會關注的重大問題,安全隱患主要是超速和超載.某中學數學活動小組設計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道上確定點D,使CD與垂直,測得CD的長等于21米,在上點D的同側取點A、B,使∠CAD=30,∠CBD=60.(1)求AB的長(精確到0.1米,參考數據:);(2)已知本路段對校車限速為40千米/小時,若測得某輛校車從A到B用時2秒,這輛校車是否超速?說明理由.21.(10分)如圖,拋物線y=ax2+2x+c與x軸交于A、B(3,0)兩點,與y軸交于點C(0,3).(1)求該拋物線的解析式;(2)在拋物線的對稱軸上是否存在一點Q,使得以A、C、Q為頂點的三角形為直角三角形?若存在,試求出點Q的坐標;若不存在,請說明理由.22.(10分)某校學生會準備調查六年級學生參加“武術類”、“書畫類”、“棋牌類”、“器樂類”四類校本課程的人數.(1)確定調查方式時,甲同學說:“我到六年級(1)班去調查全體同學”;乙同學說:“放學時我到校門口隨機調查部分同學”;丙同學說:“我到六年級每個班隨機調查一定數量的同學”.請指出哪位同學的調查方式最合理.類別頻數(人數)頻率武術類0.25書畫類200.20棋牌類15b器樂類合計a1.00(2)他們采用了最為合理的調查方法收集數據,并繪制了如圖所示的統計表和扇形統計圖.請你根據以上圖表提供的信息解答下列問題:①a=_____,b=_____;②在扇形統計圖中,器樂類所對應扇形的圓心角的度數是_____;③若該校六年級有學生560人,請你估計大約有多少學生參加武術類校本課程.23.(12分)已知:如圖,四邊形ABCD中,AD∥BC,AD=CD,E是對角線BD上一點,且EA=EC.(1)求證:四邊形ABCD是菱形;(2)如果∠BDC=30°,DE=2,EC=3,求CD的長.24.(14分)某社區活動中心為鼓勵居民加強體育鍛煉,準備購買10副某種品牌的羽毛球拍,每副球拍配x(x≥2)個羽毛球,供社區居民免費借用.該社區附近A、B兩家超市都有這種品牌的羽毛球拍和羽毛球出售,且每副球拍的標價均為30元,每個羽毛球的標價為3元,目前兩家超市同時在做促銷活動:A超市:所有商品均打九折(按標價的90%)銷售;B超市:買一副羽毛球拍送2個羽毛球.設在A超市購買羽毛球拍和羽毛球的費用為yA(元),在B超市購買羽毛球拍和羽毛球的費用為yB(元).請解答下列問題:分別寫出yA、yB與x之間的關系式;若該活動中心只在一家超市購買,你認為在哪家超市購買更劃算?若每副球拍配15個羽毛球,請你幫助該活動中心設計出最省錢的購買方案.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
求最高氣溫比最低氣溫高多少度,即是求最高氣溫與最低氣溫的差,這個實際問題可轉化為減法運算,列算式計算即可.【詳解】3-(-4)=3+4=7℃.
故選B.2、D【解析】
∵函數的圖象過點A(1,m),B(4,n),∴m==,n==3,∴A(1,),B(4,3),過A作AC∥x軸,交B′B的延長線于點C,則C(4,),∴AC=4﹣1=3,∵曲線段AB掃過的面積為9(圖中的陰影部分),∴AC?AA′=3AA′=9,∴AA′=3,即將函數的圖象沿y軸向上平移3個單位長度得到一條新函數的圖象,∴新圖象的函數表達式是.故選D.3、B【解析】
由圓周角定理即可解答.【詳解】∵△ABC是⊙O的內接三角形,∴∠A=∠BOC,而∠BOC=120°,∴∠A=60°.故選B.【點睛】本題考查了圓周角定理,熟練運用圓周角定理是解決問題的關鍵.4、D【解析】
由被開方數非負結合根的判別式△≥0,即可得出關于k的一元一次不等式組,解之即可得出k的取值范圍.【詳解】∵關于x的方程x2-x+1=0有實數根,∴,解得:k≥1.故選D.【點睛】本題考查了根的判別式,牢記“當△≥0時,方程有實數根”是解題的關鍵.5、C【解析】
A、B是一元二次方程可以根據其判別式判斷其根的情況;C是無理方程,容易看出沒有實數根;D是分式方程,能使得分子為零,分母不為零的就是方程的根.【詳解】A.中△=02﹣4×1×16=﹣64<0,方程無實數根;B.中△=(﹣1)2﹣4×1×1=﹣3<0,方程無實數根;C.x=﹣1是方程的根;D.當x=1時,分母x2-1=0,無實數根.故選:C.【點睛】本題考查了方程解得定義,能使方程左右兩邊相等的未知數的值叫做方程的解.解答本題的關鍵是針對不同的方程進行分類討論.6、B【解析】
根據科學記數法的表示形式(a×10n的形式,其中1≤|a|<10,n為整數,確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同;當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數).【詳解】解:135000用科學記數法表示為:1.35×1.故選B.【點睛】科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.7、D【解析】
直接利用相反數以及絕對值的定義得出x,y的值,進而得出答案.【詳解】解:∵x是1的相反數,|y|=3,∴x=-1,y=±3,∴y-x=4或-1.故選D.【點睛】此題主要考查了有理數的混合運算,正確得出x,y的值是解題關鍵.8、B【解析】考點:概率公式.專題:計算題.分析:根據概率的求法,找準兩點:①全部情況的總數;②符合條件的情況數目;二者的比值就是其發生的概率.解答:解:從1、2、3、4、5、6這六個數中隨機取出一個數,共有6種情況,取出的數是3的倍數的可能有3和6兩種,故概率為2/6="1/"3.故選B.點評:此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)="m"/n.9、A【解析】
連接OB,根據切線的性質和直角三角形的兩銳角互余求得∠AOB=64°,再由等腰三角形的性質可得∠C=∠OBC,根據三角形外角的性質即可求得∠ACB的度數.【詳解】連接OB,∵AB與☉O相切于點B,∴∠OBA=90°,∵∠A=26°,∴∠AOB=90°-26°=64°,∵OB=OC,∴∠C=∠OBC,∴∠AOB=∠C+∠OBC=2∠C,∴∠C=32°.故選A.【點睛】本題考查了切線的性質,利用切線的性質,結合三角形外角的性質求出角的度數是解決本題的關鍵.10、D【解析】
根據直角三角形斜邊上的中線等于斜邊的一半可得CD=AD,再根據等邊對等角的性質可得∠A=∠ACD,然后根據正切函數的定義列式求出∠A的正切值,即為tan∠ACD的值.【詳解】∵CD是AB邊上的中線,∴CD=AD,∴∠A=∠ACD,∵∠ACB=90°,BC=6,AC=8,∴tan∠A=,∴tan∠ACD的值.故選D.【點睛】本題考查了銳角三角函數的定義,直角三角形斜邊上的中線等于斜邊的一半的性質,等邊對等角的性質,求出∠A=∠ACD是解本題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、-4【解析】:由反比例函數解析式可知:系數,∵S△AOB=2即,∴;又由雙曲線在二、四象限k<0,∴k=-412、【解析】
過點A作AD⊥l1于D,過點B作BE⊥l1于E,根據同角的余角相等求出∠CAD=∠BCE,然后利用“角角邊”證明△ACD和△CBE全等,根據全等三角形對應邊相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用銳角的正弦等于對邊比斜邊列式計算即可得解.【詳解】如圖,過點A作AD⊥l1于D,過點B作BE⊥l1于E,設l1,l2,l3間的距離為1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,∴AD=2,∴AC=,∴AB=AC=,∴sinα=,故答案為.【點睛】本題考查了全等三角形的判定與性質,等腰直角三角形的性質,銳角三角函數的定義,正確添加輔助線構造出全等三角形是解題的關鍵.13、.【解析】待定系數法,曲線上點的坐標與方程的關系,反比例函數圖象的對稱性,正方形的性質.【分析】由反比例函數的對稱性可知陰影部分的面積和正好為小正方形面積的,設小正方形的邊長為b,圖中陰影部分的面積等于9可求出b的值,從而可得出直線AB的表達式,再根據點P(2a,a)在直線AB上可求出a的值,從而得出反比例函數的解析式:∵反比例函數的圖象關于原點對稱,∴陰影部分的面積和正好為小正方形的面積.設正方形的邊長為b,則b2=9,解得b=3.∵正方形的中心在原點O,∴直線AB的解析式為:x=2.∵點P(2a,a)在直線AB上,∴2a=2,解得a=3.∴P(2,3).∵點P在反比例函數(k>0)的圖象上,∴k=2×3=2.∴此反比例函數的解析式為:.14、x≠﹣.【解析】
該函數是分式,分式有意義的條件是分母不等于1,故分母x﹣1≠1,解得x的范圍.【詳解】解:根據分式有意義的條件得:2x+3≠1解得:故答案為【點睛】本題考查了函數自變量取值范圍的求法.要使得本題函數式子有意義,必須滿足分母不等于1.15、18【解析】
三角形的重心是三條中線的交點,根據中線的性質,S△ACD=S△BCD;再利用勾股定理逆定理證明BG⊥CE,從而得出△BCD的高,可求△BCD的面積.【詳解】∵點G是△ABC的重心,∴∵GB=3,EG=GC=4,BE=GA=5,∴,即BG⊥CE,∵CD為△ABC的中線,∴∴故答案為:18.【點睛】考查三角形重心的性質,中線的性質,旋轉的性質,勾股定理逆定理等,綜合性比較強,對學生要求較高.16、36或4.【解析】
(3)當B′D=B′C時,過B′點作GH∥AD,則∠B′GE=90°,當B′C=B′D時,AG=DH=DC=8,由AE=3,AB=36,得BE=3.由翻折的性質,得B′E=BE=3,∴EG=AG﹣AE=8﹣3=5,∴B′G===33,∴B′H=GH﹣B′G=36﹣33=4,∴DB′===;(3)當DB′=CD時,則DB′=36(易知點F在BC上且不與點C、B重合);(3)當CB′=CD時,∵EB=EB′,CB=CB′,∴點E、C在BB′的垂直平分線上,∴EC垂直平分BB′,由折疊可知點F與點C重合,不符合題意,舍去.綜上所述,DB′的長為36或.故答案為36或.考點:3.翻折變換(折疊問題);3.分類討論.17、6.28×1.【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】62800用科學記數法表示為6.28×1.故答案為6.28×1.【點睛】此題主要考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.三、解答題(共7小題,滿分69分)18、(1)y=﹣3(x+3)(x﹣1)=﹣3x2﹣23x+33;(2)(﹣4,﹣153)和(﹣6,﹣37)(3)(1,﹣43【解析】試題分析:(1)根據二次函數的交點式確定點A、B的坐標,求出直線的解析式,求出點D的坐標,求出拋物線的解析式;(2)作PH⊥x軸于H,設點P的坐標為(m,n),分△BPA∽△ABC和△PBA∽△ABC,根據相似三角形的性質計算即可;(3)作DM∥x軸交拋物線于M,作DN⊥x軸于N,作EF⊥DM于F,根據正切的定義求出Q的運動時間t=BE+EF時,t最小即可.試題解析:(1)∵y=a(x+3)(x﹣1),∴點A的坐標為(﹣3,0)、點B兩的坐標為(1,0),∵直線y=﹣x+b經過點A,∴b=﹣3,∴y=﹣x﹣3,當x=2時,y=﹣5,則點D的坐標為(2,﹣5),∵點D在拋物線上,∴a(2+3)(2﹣1)=﹣5,解得,a=﹣,則拋物線的解析式為y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;(2)作PH⊥x軸于H,設點P的坐標為(m,n),當△BPA∽△ABC時,∠BAC=∠PBA,∴tan∠BAC=tan∠PBA,即=,∴=,即n=﹣a(m﹣1),∴,解得,m1=﹣4,m2=1(不合題意,舍去),當m=﹣4時,n=5a,∵△BPA∽△ABC,∴=,即AB2=AC?PB,∴42=?,解得,a1=(不合題意,舍去),a2=﹣,則n=5a=﹣,∴點P的坐標為(﹣4,﹣);當△PBA∽△ABC時,∠CBA=∠PBA,∴tan∠CBA=tan∠PBA,即=,∴=,即n=﹣3a(m﹣1),∴,解得,m1=﹣6,m2=1(不合題意,舍去),當m=﹣6時,n=21a,∵△PBA∽△ABC,∴=,即AB2=BC?PB,∴42=?,解得,a1=(不合題意,舍去),a2=﹣,則點P的坐標為(﹣6,﹣),綜上所述,符合條件的點P的坐標為(﹣4,﹣)和(﹣6,﹣);(3)作DM∥x軸交拋物線于M,作DN⊥x軸于N,作EF⊥DM于F,則tan∠DAN===,∴∠DAN=60°,∴∠EDF=60°,∴DE==EF,∴Q的運動時間t=+=BE+EF,∴當BE和EF共線時,t最小,則BE⊥DM,E(1,﹣4).考點:二次函數綜合題.19、證明見解析.【解析】
易證△DAC≌△CEF,即可得證.【詳解】證明:∵∠DCF=∠E=90°,∴∠DCA+∠ECF=90°,∠CFE+∠ECF=90°,∴∠DCA=∠CFE,在△DAC和△CEF中:,∴△DAC≌△CEF(AAS),∴AD=CE,AC=EF,∴AE=AD+EF【點睛】此題主要考查全等三角形的判定與性質,解題的關鍵是熟知全等三角形的判定與性質.20、(1)24.2米(2)超速,理由見解析【解析】
(1)分別在Rt△ADC與Rt△BDC中,利用正切函數,即可求得AD與BD的長,從而求得AB的長.(2)由從A到B用時2秒,即可求得這輛校車的速度,比較與40千米/小時的大小,即可確定這輛校車是否超速.【詳解】解:(1)由題意得,在Rt△ADC中,,在Rt△BDC中,,∴AB=AD-BD=(米).(2)∵汽車從A到B用時2秒,∴速度為24.2÷2=12.1(米/秒),∵12.1米/秒=43.56千米/小時,∴該車速度為43.56千米/小時.∵43.56千米/小時大于40千米/小時,∴此校車在AB路段超速.21、(1)y=﹣x2+2x+3;(2)見解析.【解析】
(1)將B(3,0),C(0,3)代入拋物線y=ax2+2x+c,可以求得拋物線的解析式;(2)拋物線的對稱軸為直線x=1,設點Q的坐標為(1,t),利用勾股定理求出AC2、AQ2、CQ2,然后分AC為斜邊,AQ為斜邊,CQ時斜邊三種情況求解即可.【詳解】解:(1)∵拋物線y=ax2+2x+c與x軸交于A、B(3,0)兩點,與y軸交于點C(0,3),∴,得,∴該拋物線的解析式為y=﹣x2+2x+3;(2)在拋物線的對稱軸上存在一點Q,使得以A、C、Q為頂點的三角形為直角三角形,理由:∵拋物線y=﹣x2+2x+3=﹣(x﹣1)2+4,點B(3,0),點C(0,3),∴拋物線的對稱軸為直線x=1,∴點A的坐標為(﹣1,0),設點Q的坐標為(1,t),則AC2=OC2+OA2=32+12=10,AQ2=22+t2=4+t2,CQ2=12+(3﹣t)2=t2﹣6t+10,當AC為斜邊時,10=4+t2+t2﹣6t+10,解得,t1=1或t2=2,∴點Q的坐標為(1,1)或(1,2),當AQ為斜邊時,4+t2=10+t2﹣6t+10,解得,t=,∴點Q的坐標為(1,),當CQ時斜邊時,t2﹣6t+10=4+t2+10,解得,t=,∴點Q的坐標為(1,﹣),由上可得,當點Q的坐標是(1,1)、(1,2)、(1,)或(1,﹣)時,使得以A、C、Q為頂點的三角形為直角三角形.【點睛】本題考查了待定系數法求函數解析式,二次函數的圖像與性質,勾股定理及分類討論的數學思想,熟練掌握待定系數法是解(1)的關鍵,分三種情況討論是解(2)的關鍵.22、(1)見解析;(2)①a=100,b=0.15;②144°;③140人.【解析】
(1)采用隨機調查的方式比較合理,隨機調查的關鍵是調查的隨機性,這樣才合理;
(2)①用喜歡書畫類的頻數除以喜歡書畫類的頻率即可求得a值,用喜歡棋牌類的人數除以總人數即可求得b值.②求得器樂類的頻率乘以360°即可.③用總人數乘以喜歡武術類的頻率即可求喜歡武術的總人數.【詳解】(1)∵調查的人數較多,范圍較大,∴應當采用隨機抽樣調查,∵到六年級每個班隨機調查一定數量的同學相對比較全面,∴丙同學的說法最合理.(2)①∵喜歡書畫類的有20人,頻率為0.20,∴a=20÷0.20=100,b=15÷100=0.15;②∵喜歡器樂類的頻率為:1﹣0.25﹣0.20﹣0.15=0.4,∴喜歡器樂類所對應的扇形的圓心角的度數為:360×0.4=144°;③喜歡武術類的人數為:560×0.25=140人.【點睛】本題考查了用樣本估計總體和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.23、(1)證明見解析;(2)CD的長為2.【解析】
(1)首先證得△ADE≌△CDE,由全等三角形的性質可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行線的判定定理可得四邊形ABCD為平行四邊形,由AD=CD可得四邊形ABCD是菱形;(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 皮革制品的染色與涂飾工藝考核試卷
- 海水淡化處理用于海島居民生活供水考核試卷
- 海洋油氣資源開發工程安全文化培育規范考核試卷
- 電信服務在智能手表等可穿戴設備的應用考核試卷
- 機床制造中的質量控制成本考核試卷
- 衛生潔具市場促銷活動策劃與零售成效分析考核試卷
- 電子測量誤差分析與處理考核試卷
- 電氣設備在智能電網用能分析與優化中的應用考核試卷
- 2025【授權協議】律師服務合同
- 數控機床行業現狀及前景
- 江西省南昌市高三二模考試地理試題
- 廣東省高州市2023-2024學年高一下學期期中考試數學
- 2024年高等教育文學類自考-06050人際關系心理學考試近5年真題附答案
- 福建省公路水運工程試驗檢測費用參考指標
- CBL聯合情景模擬人文護理查房
- 二級建造師繼續教育模擬考試題庫500題(含答案)
- JGJT322-2013 混凝土中氯離子含量檢測技術規程
- 《中藥學》教案完整版
- 北京市西城區2023-2024學年七年級下學期期末考試數學試卷
- JTT 1501-2024 潛水作業現場安全監管要求(正式版)
- 盜竊刑事案件案例分析報告
評論
0/150
提交評論