




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省蘇州市東山中學2024屆中考押題數學預測卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.某廣場上有一個形狀是平行四邊形的花壇(如圖),分別種有紅、黃、藍、綠、橙、紫6種顏色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列說法錯誤的是()A.紅花、綠花種植面積一定相等B.紫花、橙花種植面積一定相等C.紅花、藍花種植面積一定相等D.藍花、黃花種植面積一定相等2.下列運算正確的是()A.5a+2b=5(a+b) B.a+a2=a3C.2a3?3a2=6a5 D.(a3)2=a53.如圖,AB∥CD,∠1=45°,∠3=80°,則∠2的度數為()A.30° B.35° C.40° D.45°4.某中學籃球隊12名隊員的年齡如下表:年齡:(歲)13141516人數1542關于這12名隊員的年齡,下列說法錯誤的是()A.眾數是14歲 B.極差是3歲 C.中位數是14.5歲 D.平均數是14.8歲5.中國古代在利用“計里畫方”(比例縮放和直角坐標網格體系)的方法制作地圖時,會利用測桿、水準儀和照板來測量距離.在如圖所示的測量距離AB的示意圖中,記照板“內芯”的高度為EF,觀測者的眼睛(圖中用點C表示)與BF在同一水平線上,則下列結論中,正確的是()A. B. C. D.6.如圖,某同學不小心把一塊三角形的玻璃打碎成三片,現在他要到玻璃店去配一塊完全一樣形狀的玻璃.那么最省事的辦法是帶()A.帶③去 B.帶②去 C.帶①去 D.帶①②去7.如圖,已知直線a∥b∥c,直線m,n與a,b,c分別交于點A,C,E,B,D,F,若AC=4,CE=6,BD=3,則DF的值是()A.4 B.4.5 C.5 D.5.58.下列幾何體中三視圖完全相同的是()A. B. C. D.9.如圖,正方形ABCD的邊長為2,其面積標記為S1,以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標記為S2,…,按照此規律繼續下去,則S2018的值為()A. B. C. D.10.|﹣3|=()A. B.﹣ C.3 D.﹣311.下列計算正確的是()A.2x2-3x2=x2 B.x+x=x2 C.-(x-1)=-x+1 D.3+x=3x12.甲、乙兩名同學進行跳高測試,每人10次跳高的平均成績恰好都是1.6米,方差分別是S甲2=A.甲 B.乙 C.甲乙同樣穩定 D.無法確定二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在Rt△ABC中,∠C=90°,若AB=4,sinA=,則斜邊AB邊上的高CD的長為________.14.如圖,正方形ABCD中,AB=3,以B為圓心,AB長為半徑畫圓B,點P在圓B上移動,連接AP,并將AP繞點A逆時針旋轉90°至Q,連接BQ,在點P移動過程中,BQ長度的最小值為_____.15.如果將拋物線平移,使平移后的拋物線頂點坐標為,那么所得新拋物線的表達式是__________.16.方程3x(x-1)=2(x-1)的根是17.如圖,在△ABC中,DE∥BC,EF∥AB.若AD=2BD,則的值等于_____18.如圖放置的正方形,正方形,正方形,…都是邊長為的正方形,點在軸上,點,…,都在直線上,則的坐標是__________,的坐標是______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖所示,△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,EC的延長線交BD于點P.(1)把△ABC繞點A旋轉到圖1,BD,CE的關系是(選填“相等”或“不相等”);簡要說明理由;(2)若AB=3,AD=5,把△ABC繞點A旋轉,當∠EAC=90°時,在圖2中作出旋轉后的圖形,PD=,簡要說明計算過程;(3)在(2)的條件下寫出旋轉過程中線段PD的最小值為,最大值為.20.(6分)某省為解決農村飲用水問題,省財政部門共投資20億元對各市的農村飲用水的“改水工程”予以一定比例的補助.2008年,A市在省財政補助的基礎上投入600萬元用于“改水工程”,計劃以后每年以相同的增長率投資,2010年該市計劃投資“改水工程”1176萬元.求A市投資“改水工程”的年平均增長率;從2008年到2010年,A市三年共投資“改水工程”多少萬元?21.(6分)解方程:xx+1+222.(8分)某企業為杭州計算機產業基地提供電腦配件.受美元走低的影響,從去年1至9月,該配件的原材料價格一路攀升,每件配件的原材料價格y1(元)與月份x(1≤x≤9,且x取整數)之間的函數關系如下表:月份x123456789價格y1(元/件)560580600620640660680700720隨著國家調控措施的出臺,原材料價格的漲勢趨緩,10至12月每件配件的原材料價格y2(元)與月份x(10≤x≤12,且x取整數)之間存在如圖所示的變化趨勢:(1)請觀察題中的表格,用所學過的一次函數、反比例函數或二次函數的有關知識,直接寫出y1與x之間的函數關系式,根據如圖所示的變化趨勢,直接寫出y2與x之間滿足的一次函數關系式;(2)若去年該配件每件的售價為1000元,生產每件配件的人力成本為50元,其它成本30元,該配件在1至9月的銷售量p1(萬件)與月份x滿足關系式p1=0.1x+1.1(1≤x≤9,且x取整數),10至12月的銷售量p2(萬件)p2=﹣0.1x+2.9(10≤x≤12,且x取整數).求去年哪個月銷售該配件的利潤最大,并求出這個最大利潤.23.(8分)如圖是東方貨站傳送貨物的平面示意圖,為了提高安全性,工人師傅打算減小傳送帶與地面的夾角,由原來的45°改為36°,已知原傳送帶BC長為4米,求新傳送帶AC的長及新、原傳送帶觸地點之間AB的長.(結果精確到0.1米)參考數據:sin36°≈0.59,cos36°≈0.1,tan36°≈0.73,取1.41424.(10分)為響應國家全民閱讀的號召,某社區鼓勵居民到社區閱覽室借閱讀書,并統計每年的借閱人數和圖書借閱總量(單位:本),該閱覽室在2014年圖書借閱總量是7500本,2016年圖書借閱總量是10800本.(1)求該社區的圖書借閱總量從2014年至2016年的年平均增長率;(2)已知2016年該社區居民借閱圖書人數有1350人,預計2017年達到1440人,如果2016年至2017年圖書借閱總量的增長率不低于2014年至2016年的年平均增長率,那么2017年的人均借閱量比2016年增長a%,求a的值至少是多少?25.(10分)如圖,港口B位于港口A的南偏東37°方向,燈塔C恰好在AB的中點處,一艘海輪位于港口A的正南方向,港口B的正西方向的D處,它沿正北方向航行5km到達E處,測得燈塔C在北偏東45°方向上,這時,E處距離港口A有多遠?(參考數據:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)26.(12分)如圖,AB為⊙O的直徑,點E在⊙O上,C為的中點,過點C作直線CD⊥AE于D,連接AC、BC.(1)試判斷直線CD與⊙O的位置關系,并說明理由;(2)若AD=2,AC=,求AB的長.27.(12分)如圖,在?ABCD中,以點4為圓心,AB長為半徑畫弧交AD于點F;再分別以點B、F為圓心,大于12(1)根據以上尺規作圖的過程,求證:四邊形ABEF是菱形;(2)若AB=2,AE=23,求∠BAD的大小.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
圖中,線段GH和EF將大平行四邊形ABCD分割成了四個小平行四邊形,平行四邊形的對角線平分該平行四邊形的面積,據此進行解答即可.【詳解】解:由已知得題圖中幾個四邊形均是平行四邊形.又因為平行四邊形的一條對角線將平行四邊形分成兩個全等的三角形,即面積相等,故紅花和綠花種植面積一樣大,藍花和黃花種植面積一樣大,紫花和橙花種植面積一樣大.故選擇C.【點睛】本題考查了平行四邊形的定義以及性質,知道對角線平分平行四邊形是解題關鍵.2、C【解析】
直接利用合并同類項法則以及單項式乘以單項式、冪的乘方運算法則分別化簡得出答案.【詳解】A、5a+2b,無法計算,故此選項錯誤;B、a+a2,無法計算,故此選項錯誤;C、2a3?3a2=6a5,故此選項正確;D、(a3)2=a6,故此選項錯誤.故選C.【點睛】此題主要考查了合并同類項以及單項式乘以單項式、冪的乘方運算,正確掌握運算法則是解題關鍵.3、B【解析】分析:根據平行線的性質和三角形的外角性質解答即可.詳解:如圖,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故選B.點睛:此題考查平行線的性質,關鍵是根據平行線的性質和三角形的外角性質解答.4、D【解析】分別利用極差以及中位數和眾數以及平均數的求法分別分析得出答案.解:由圖表可得:14歲的有5人,故眾數是14,故選項A正確,不合題意;極差是:16﹣13=3,故選項B正確,不合題意;中位數是:14.5,故選項C正確,不合題意;平均數是:(13+14×5+15×4+16×2)÷12≈14.5,故選項D錯誤,符合題意.故選D.“點睛”此題主要考查了極差以及中位數和眾數以及平均數的求法,正確把握相關定義是解題關鍵.5、B【解析】分析:由平行得出相似,由相似得出比例,即可作出判斷.詳解:∵EF∥AB,∴△CEF∽△CAB,∴,故選B.點睛:本題考查了相似三角形的應用,熟練掌握相似三角形的判定與性質是解答本題的關鍵.6、A【解析】
第一塊和第二塊只保留了原三角形的一個角和部分邊,根據這兩塊中的任一塊均不能配一塊與原來完全一樣的;第三塊不僅保留了原來三角形的兩個角還保留了一邊,則可以根據ASA來配一塊一樣的玻璃.【詳解】③中含原三角形的兩角及夾邊,根據ASA公理,能夠唯一確定三角形.其它兩個不行.故選:A.【點睛】此題主要考查全等三角形的運用,熟練掌握,即可解題.7、B【解析】試題分析:根據平行線分線段成比例可得,然后根據AC=1,CE=6,BD=3,可代入求解DF=1.2.故選B考點:平行線分線段成比例8、A【解析】
找到從物體正面、左面和上面看得到的圖形全等的幾何體即可.【詳解】解:A、球的三視圖完全相同,都是圓,正確;B、圓柱的俯視圖與主視圖和左視圖不同,錯誤;C、圓錐的俯視圖與主視圖和左視圖不同,錯誤;D、四棱錐的俯視圖與主視圖和左視圖不同,錯誤;故選A.【點睛】考查三視圖的有關知識,注意三視圖都相同的常見的幾何體有球和正方體.9、A【解析】
根據等腰直角三角形的性質可得出2S2=S1,根據數的變化找出變化規律“Sn=()n﹣2”,依此規律即可得出結論.【詳解】如圖所示,∵正方形ABCD的邊長為2,△CDE為等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴2S2=S1.觀察,發現規律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,…,∴Sn=()n﹣2.當n=2018時,S2018=()2018﹣2=()3.故選A.【點睛】本題考查了等腰直角三角形的性質、勾股定理,解題的關鍵是利用圖形找出規律“Sn=()n﹣2”.10、C【解析】
根據絕對值的定義解答即可.【詳解】|-3|=3故選:C【點睛】本題考查的是絕對值,理解絕對值的定義是關鍵.11、C【解析】
根據合并同類項法則和去括號法則逐一判斷即可得.【詳解】解:A.2x2-3x2=-x2,故此選項錯誤;
B.x+x=2x,故此選項錯誤;
C.-(x-1)=-x+1,故此選項正確;
D.3與x不能合并,此選項錯誤;
故選C.【點睛】本題考查了整式的加減,熟練掌握運算法則是解題的關鍵.12、A【解析】
根據方差的意義可作出判斷.方差是用來衡量一組數據波動大小的量,方差越小,表明這組數據分布比較集中,各數據偏離平均數越小,即波動越小,數據越穩定.【詳解】∵S甲2=1.4,S乙2=2.5,∴S甲2<S乙2,∴甲、乙兩名同學成績更穩定的是甲;故選A.【點睛】本題考查方差的意義.方差是用來衡量一組數據波動大小的量,方差越大,表明這組數據偏離平均數越大,即波動越大,數據越不穩定;反之,方差越小,表明這組數據分布比較集中,各數據偏離平均數越小,即波動越小,數據越穩定.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】如圖,∵在Rt△ABC中,∠C=90°,AB=4,sinA=,∴BC=,∴AC=,∵CD是AB邊上的高,∴CD=AC·sinA=.故答案為:.14、3﹣1【解析】
通過畫圖發現,點Q的運動路線為以D為圓心,以1為半徑的圓,可知:當Q在對角線BD上時,BQ最小,先證明△PAB≌△QAD,則QD=PB=1,再利用勾股定理求對角線BD的長,則得出BQ的長.【詳解】如圖,當Q在對角線BD上時,BQ最小.連接BP,由旋轉得:AP=AQ,∠PAQ=90°,∴∠PAB+∠BAQ=90°.∵四邊形ABCD為正方形,∴AB=AD,∠BAD=90°,∴∠BAQ+∠DAQ=90°,∴∠PAB=∠DAQ,∴△PAB≌△QAD,∴QD=PB=1.在Rt△ABD中,∵AB=AD=3,由勾股定理得:BD=,∴BQ=BD﹣QD=3﹣1,即BQ長度的最小值為(3﹣1).故答案為3﹣1.【點睛】本題是圓的綜合題.考查了正方形的性質、旋轉的性質和最小值問題,尋找點Q的運動軌跡是本題的關鍵,通過證明兩三角形全等求出BQ長度的最小值最小值.15、.【解析】
平移不改變拋物線的開口方向與開口大小,即解析式的二次項系數不變,根據拋物線的頂點式可求拋物線解析式.【詳解】∵原拋物線解析式為y=1x1,頂點坐標是(0,0),平移后拋物線頂點坐標為(1,1),∴平移后的拋物線的表達式為:y=1(x﹣1)1+1.故答案為:y=1(x﹣1)1+1.【點睛】本題考查了拋物線的平移與解析式變化的關系.關鍵是明確拋物線的平移實質上是頂點的平移,能用頂點式表示平移后的拋物線解析式.16、x1=1,x2=-.【解析】試題解析:3x(x-1)=2(x-1)3x(x-1)-2(x-1)=0(3x-2)(x-1)=03x-2=0,x-1=0解得:x1=1,x2=-.考點:解一元二次方程---因式分解法.17、【解析】
根據平行線分線段成比例定理解答即可.【詳解】解:∵DE∥BC,AD=2BD,∴,∵EF∥AB,∴,故答案為.【點睛】本題考查了平行線分線段成比例:三條平行線截兩條直線,所得的對應線段成比例.18、【解析】
先求出OA的長度,然后利用含30°的直角三角形的性質得到點D的坐標,探索規律,從而得到的坐標即可.【詳解】分別過點作y軸的垂線交y軸于點,∵點B在上設∴同理,都是含30°的直角三角形∵,∴同理,點的橫坐標為縱坐標為故點的坐標為故答案為:;.【點睛】本題主要考查含30°的直角三角形的性質,找到點的坐標規律是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)BD,CE的關系是相等;(2)或;(3)1,1【解析】分析:(1)依據△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA,∠BAD=∠CAE,DA=EA,進而得到△ABD≌△ACE,可得出BD=CE;(2)分兩種情況:依據∠PDA=∠AEC,∠PCD=∠ACE,可得△PCD∽△ACE,即可得到=,進而得到PD=;依據∠ABD=∠PBE,∠BAD=∠BPE=90°,可得△BAD∽△BPE,即可得到,進而得出PB=,PD=BD+PB=;(3)以A為圓心,AC長為半徑畫圓,當CE在⊙A下方與⊙A相切時,PD的值最小;當CE在在⊙A右上方與⊙A相切時,PD的值最大.在Rt△PED中,PD=DE?sin∠PED,因此銳角∠PED的大小直接決定了PD的大小.分兩種情況進行討論,即可得到旋轉過程中線段PD的最小值以及最大值.詳解:(1)BD,CE的關系是相等.理由:∵△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,∴BA=CA,∠BAD=∠CAE,DA=EA,∴△ABD≌△ACE,∴BD=CE;故答案為相等.(2)作出旋轉后的圖形,若點C在AD上,如圖2所示:∵∠EAC=90°,∴CE=,∵∠PDA=∠AEC,∠PCD=∠ACE,∴△PCD∽△ACE,∴,∴PD=;若點B在AE上,如圖2所示:∵∠BAD=90°,∴Rt△ABD中,BD=,BE=AE﹣AB=2,∵∠ABD=∠PBE,∠BAD=∠BPE=90°,∴△BAD∽△BPE,∴,即,解得PB=,∴PD=BD+PB=+=,故答案為或;(3)如圖3所示,以A為圓心,AC長為半徑畫圓,當CE在⊙A下方與⊙A相切時,PD的值最小;當CE在在⊙A右上方與⊙A相切時,PD的值最大.如圖3所示,分兩種情況討論:在Rt△PED中,PD=DE?sin∠PED,因此銳角∠PED的大小直接決定了PD的大小.①當小三角形旋轉到圖中△ACB的位置時,在Rt△ACE中,CE==4,在Rt△DAE中,DE=,∵四邊形ACPB是正方形,∴PC=AB=3,∴PE=3+4=1,在Rt△PDE中,PD=,即旋轉過程中線段PD的最小值為1;②當小三角形旋轉到圖中△AB'C'時,可得DP'為最大值,此時,DP'=4+3=1,即旋轉過程中線段PD的最大值為1.故答案為1,1.點睛:本題屬于幾何變換綜合題,主要考查了等腰直角三角形的性質、旋轉變換、全等三角形的判定和性質、相似三角形的判定和性質、圓的有關知識,解題的關鍵是靈活運用這些知識解決問題,學會分類討論的思想思考問題,學會利用圖形的特殊位置解決最值問題.20、(1)40%;(2)2616.【解析】
(1)設A市投資“改水工程”的年平均增長率是x.根據:2008年,A市投入600萬元用于“改水工程”,2010年該市計劃投資“改水工程”1176萬元,列方程求解;(2)根據(1)中求得的增長率,分別求得2009年和2010年的投資,最后求和即可.【詳解】解:(1)設A市投資“改水工程”年平均增長率是x,則.解之,得或(不合題意,舍去).所以,A市投資“改水工程”年平均增長率為40%.(2)600+600×1.4+1176=2616(萬元).A市三年共投資“改水工程”2616萬元.21、-3【解析】試題分析:解得x=-3經檢驗:x=-3是原方程的根.∴原方程的根是x=-3考點:解一元一次方程點評:在中考中比較常見,在各種題型中均有出現,一般難度不大,要熟練掌握.22、(1)y1=20x+540,y2=10x+1;(2)去年4月銷售該配件的利潤最大,最大利潤為450萬元.【解析】
(1)利用待定系數法,結合圖象上點的坐標求出一次函數解析式即可;(2)根據生產每件配件的人力成本為50元,其它成本30元,以及售價銷量進而求出最大利潤.【詳解】(1)利用表格得出函數關系是一次函數關系:設y1=kx+b,∴解得:∴y1=20x+540,利用圖象得出函數關系是一次函數關系:設y2=ax+c,∴解得:∴y2=10x+1.(2)去年1至9月時,銷售該配件的利潤w=p1(1000﹣50﹣30﹣y1),=(0.1x+1.1)(1000﹣50﹣30﹣20x﹣540)=﹣2x2+16x+418,=﹣2(x﹣4)2+450,(1≤x≤9,且x取整數)∵﹣2<0,1≤x≤9,∴當x=4時,w最大=450(萬元);去年10至12月時,銷售該配件的利潤w=p2(1000﹣50﹣30﹣y2)=(﹣0.1x+2.9)(1000﹣50﹣30﹣10x﹣1),=(x﹣29)2,(10≤x≤12,且x取整數),∵10≤x≤12時,∴當x=10時,w最大=361(萬元),∵450>361,∴去年4月銷售該配件的利潤最大,最大利潤為450萬元.【點睛】此題主要考查了一次函數的應用,根據已知得出函數關系式以及利用函數增減性得出函數最值是解題關鍵.23、新傳送帶AC的長為1.8m,新、原傳送帶觸地點之間AB的長約為1.2m.【解析】
根據題意得出:∠A=36°,∠CBD=15°,BC=1,即可得出BD的長,再表示出AD的長,進而求出AB的長.【詳解】解:如圖,作CD⊥AB于點D,由題意可得:∠A=36°,∠CBD=15°,BC=1.在Rt△BCD中,sin∠CBD=,∴CD=BCsin∠CBD=2.∵∠CBD=15°,∴BD=CD=2.在Rt△ACD中,sinA=,tanA=,∴AC=≈≈1.8,AD==,∴AB=AD﹣BD=﹣2=﹣2×1.111≈3.87﹣2.83=1.21≈1.2.答:新傳送帶AC的長為1.8m,新、原傳送帶觸地點之間AB的長約為1.2m.【點睛】本題考查了坡度坡角問題,正確構建直角三角形再求出BD的長是解題的關鍵.24、(1)20%;(2)12.1.【解析】試題分析:(1)經過兩次增長,求年平均增長率的問題,應該明確原來的基數,增長后的結果.設這兩年的年平均增長率為x,則經過兩次增長以后圖書館有書7100(1+x)2本,即可列方程求解;(2)先求出2017年圖書借閱總量的最小值,再求出2016年的人均借閱量,2017年的人均借閱量,進一步求得a的值至少是多少.試題解析:(1)設該社區的圖書借閱總量從2014年至2016年的年平均增長率為x,根據題意得7100(1+x)2=10800,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去).答:該社區的圖書借閱總量從2014年至2016年的年平均增長率為20%;(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學音樂老師教學培訓課件
- 家用紡織品的品牌戰略與營銷策略考核試卷
- 寶石礦區勘探中的地球化學技術考核試卷
- 礦山開采對氣候變化的響應考核試卷
- 電子樂器與人工智能結合考核試卷
- 礦山排土場邊坡穩定性分析及安全評價考核試卷
- 電聲器件在港口物流自動化中的應用考核試卷
- 硅冶煉過程中的能源審計與優化考核試卷
- 現代森林經營管理考核試卷
- 一年下學期班主任工作總結(32篇)
- 《張愛玲傾城之戀》課件
- 市場監管總局行業價格監管方案
- 無錫網格員考試題庫
- 長安汽車在線測評題目
- 前程無憂國企招聘筆試題庫
- 陜西西西安地區西工大附中2025屆高考語文一模試卷含解析
- 慢性心衰的管理:2024年國家心衰指南更新
- DB11 854-2012 占道作業交通安全設施設置技術要求
- 《數學課程標準》義務教育2022年修訂版(原版)
- 客戶體驗在金融業中的重要性
- 2024年全國統一高考歷史試卷(廣東卷)含答案
評論
0/150
提交評論