江蘇省無錫市小黃卷重點中學2023-2024學年中考數學考試模擬沖刺卷含解析_第1頁
江蘇省無錫市小黃卷重點中學2023-2024學年中考數學考試模擬沖刺卷含解析_第2頁
江蘇省無錫市小黃卷重點中學2023-2024學年中考數學考試模擬沖刺卷含解析_第3頁
江蘇省無錫市小黃卷重點中學2023-2024學年中考數學考試模擬沖刺卷含解析_第4頁
江蘇省無錫市小黃卷重點中學2023-2024學年中考數學考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省無錫市小黃卷重點中學2023-2024學年中考數學考試模擬沖刺卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在一個不透明的口袋里有紅、黃、藍三種顏色的小球,這些球除顏色外都相同,其中有5個紅球,4個藍球.若隨機摸出一個藍球的概率為,則隨機摸出一個黃球的概率為()A. B. C. D.2.已知△ABC,D是AC上一點,尺規在AB上確定一點E,使△ADE∽△ABC,則符合要求的作圖痕跡是()A. B.C. D.3.如圖,在⊙O中,AE是直徑,半徑OC垂直于弦AB于D,連接BE,若AB=2,CD=1,則BE的長是A.5 B.6 C.7 D.84.tan45°的值等于()A. B. C. D.15.“車輛隨機到達一個路口,遇到紅燈”這個事件是()A.不可能事件 B.不確定事件 C.確定事件 D.必然事件6.某小組在“用頻率估計概率”的試驗中,統計了某種結果出現的頻率,繪制了如圖所示的折線圖,那么符合這一結果的試驗最有可能的是()A.在裝有1個紅球和2個白球(除顏色外完全相同)的不透明袋子里隨機摸出一個球是“白球”B.從一副撲克牌中任意抽取一張,這張牌是“紅色的”C.擲一枚質地均勻的硬幣,落地時結果是“正面朝上”D.擲一個質地均勻的正六面體骰子,落地時面朝上的點數是67.如圖,AD,CE分別是△ABC的中線和角平分線.若AB=AC,∠CAD=20°,則∠ACE的度數是()A.20° B.35° C.40° D.70°8.如圖,四邊形ABCD內接于⊙O,AB為⊙O的直徑,點C為弧BD的中點,若∠DAB=50°,則∠ABC的大小是()A.55° B.60° C.65° D.70°9.1﹣的相反數是()A.1﹣ B.﹣1 C. D.﹣110.下列四張印有汽車品牌標志圖案的卡片中,是中心對稱圖形的卡片是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,點M、N分別在∠AOB的邊OA、OB上,將∠AOB沿直線MN翻折,設點O落在點P處,如果當OM=4,ON=3時,點O、P的距離為4,那么折痕MN的長為______.12.如圖,把矩形紙片OABC放入平面直角坐標系中,使OA、OC分別落在x軸、y軸上,連接OB,將紙片OABC沿OB折疊,使點A落在點A′的位置,若OB=,tan∠BOC=,則點A′的坐標為_____.13.如圖,在△ABC中,∠C=90°,D是AC上一點,DE⊥AB于點E,若AC=8,BC=6,DE=3,則AD的長為________.14.某市居民用電價格如表所示:用電量不超過a千瓦時超過a千瓦時的部分單價(元/千瓦時)0.50.6小芳家二月份用電200千瓦時,交電費105元,則a=______.15.若x=﹣1是關于x的一元二次方程x2+3x+m+1=0的一個解,則m的值為______.16.已知一組數據-3,x,-2,3,1,6的眾數為3,則這組數據的中位數為______.17.如圖所示,點C在反比例函數的圖象上,過點C的直線與x軸、y軸分別交于點A、B,且,已知的面積為1,則k的值為______.三、解答題(共7小題,滿分69分)18.(10分)在“打造青山綠山,建設美麗中國”的活動中,某學校計劃組織全校1441名師生到相關部門規劃的林區植樹,經過研究,決定租用當地租車公司一共62輛A、B兩種型號客車作為交通工具,下表是租車公司提供給學校有關兩種型號客車的載客量和租金信息:型號載客量租金單價A30人/輛380元/輛B20人/輛280元/輛注:載客量指的是每輛客車最多可載該校師生的人數.(1)設租用A型號客車x輛,租車總費用為y元,求y與x的函數解析式。(2)若要使租車總費用不超過19720元,一共有幾種租車方案?那種租車方案最省錢?19.(5分)為了提高服務質量,某賓館決定對甲、乙兩種套房進行星級提升,已知甲種套房提升費用比乙種套房提升費用少3萬元,如果提升相同數量的套房,甲種套房費用為625萬元,乙種套房費用為700萬元.(1)甲、乙兩種套房每套提升費用各多少萬元?(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費用最少?20.(8分)新農村社區改造中,有一部分樓盤要對外銷售.某樓盤共23層,銷售價格如下:第八層樓房售價為4000元/米2,從第八層起每上升一層,每平方米的售價提高50元;反之,樓層每下降一層,每平方米的售價降低30元,已知該樓盤每套房面積均為120米2.若購買者一次性付清所有房款,開發商有兩種優惠方案:降價8%,另外每套房贈送a元裝修基金;降價10%,沒有其他贈送.請寫出售價y(元/米2)與樓層x(1≤x≤23,x取整數)之間的函數表達式;老王要購買第十六層的一套房,若他一次性付清所有房款,請幫他計算哪種優惠方案更加合算.21.(10分)列方程解應用題:某地2016年為做好“精準扶貧”,投入資金1280萬元用于異地安置,并規劃投入資金逐年增加,2018年在2016年的基礎上增加投入資金1600萬元.從2016年到2018年,該地投入異地安置資金的年平均增長率為多少?22.(10分)先化簡,再求值:(﹣1)÷,其中x=1.23.(12分)京沈高速鐵路赤峰至喀左段正在建設中,甲、乙兩個工程隊計劃參與一項工程建設,甲隊單獨施工30天完成該項工程的,這時乙隊加入,兩隊還需同時施工15天,才能完成該項工程.若乙隊單獨施工,需要多少天才能完成該項工程?若甲隊參與該項工程施工的時間不超過36天,則乙隊至少施工多少天才能完成該項工程?24.(14分)如圖,二次函數的圖象與x軸交于和兩點,與y軸交于點C,一次函數的圖象過點A、C.(1)求二次函數的表達式(2)根據函數圖象直接寫出使二次函數值大于一次函數值的自變量x的取值范圍.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

設黃球有x個,根據摸出一個球是藍球的概率是,得出黃球的個數,再根據概率公式即可得出隨機摸出一個黃球的概率.【詳解】解:設袋子中黃球有x個,根據題意,得:,解得:x=3,即袋中黃球有3個,所以隨機摸出一個黃球的概率為,故選A.【點睛】此題主要考查了概率公式的應用,用到的知識點為:概率=所求情況數與總情況數之比.得到所求的情況數是解決本題的關鍵.2、A【解析】

以DA為邊、點D為頂點在△ABC內部作一個角等于∠B,角的另一邊與AB的交點即為所求作的點.【詳解】如圖,點E即為所求作的點.故選:A.【點睛】本題主要考查作圖-相似變換,根據相似三角形的判定明確過點D作一角等于∠B或∠C,并熟練掌握做一個角等于已知角的作法式解題的關鍵.3、B【解析】

根據垂徑定理求出AD,根據勾股定理列式求出半徑,根據三角形中位線定理計算即可.【詳解】解:∵半徑OC垂直于弦AB,∴AD=DB=AB=在Rt△AOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)2+()2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故選B【點睛】本題考查的是垂徑定理、勾股定理,掌握垂直于弦的直徑平分這條弦是解題的關鍵4、D【解析】

根據特殊角三角函數值,可得答案.【詳解】解:tan45°=1,故選D.【點睛】本題考查了特殊角三角函數值,熟記特殊角三角函數值是解題關鍵.5、B【解析】

根據事件發生的可能性大小判斷相應事件的類型即可.【詳解】“車輛隨機到達一個路口,遇到紅燈”是隨機事件.故選:.【點睛】本題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發生的實際;不可能事件是指在一定條件下,一定不發生的事件;不確定事件即隨機事件是指在一定條件下,可能發生也可能不發生的事件.6、D【解析】

根據統計圖可知,試驗結果在0.16附近波動,即其概率P≈0.16,計算四個選項的概率,約為0.16者即為正確答案.【詳解】根據圖中信息,某種結果出現的頻率約為0.16,在裝有1個紅球和2個白球(除顏色外完全相同)的不透明袋子里隨機摸出一個球是“白球”的概率為≈0.67>0.16,故A選項不符合題意,從一副撲克牌中任意抽取一張,這張牌是“紅色的”概率為≈0.48>0.16,故B選項不符合題意,擲一枚質地均勻的硬幣,落地時結果是“正面朝上”的概率是=0.5>0.16,故C選項不符合題意,擲一個質地均勻的正六面體骰子,落地時面朝上的點數是6的概率是≈0.16,故D選項符合題意,故選D.【點睛】本題考查了利用頻率估計概率,大量反復試驗下頻率穩定值即概率.用到的知識點為:頻率=所求情況數與總情況數之比.熟練掌握概率公式是解題關鍵.7、B【解析】

先根據等腰三角形的性質以及三角形內角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分線定義即可得出∠ACE=∠ACB=35°.【詳解】∵AD是△ABC的中線,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.∵CE是△ABC的角平分線,∴∠ACE=∠ACB=35°.故選B.【點睛】本題考查了等腰三角形的兩個底角相等的性質,等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合的性質,三角形內角和定理以及角平分線定義,求出∠ACB=70°是解題的關鍵.8、C【解析】連接OC,因為點C為弧BD的中點,所以∠BOC=∠DAB=50°,因為OC=OB,所以∠ABC=∠OCB=65°,故選C.9、B【解析】

根據相反數的的定義解答即可.【詳解】根據a的相反數為-a即可得,1﹣的相反數是﹣1.故選B.【點睛】本題考查了相反數的定義,熟知相反數的定義是解決問題的關鍵.10、C【解析】試題分析:由中心對稱圖形的概念可知,這四個圖形中只有第三個是中心對稱圖形,故答案選C.考點:中心對稱圖形的概念.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

由折疊的性質可得MN⊥OP,EO=EP=2,由勾股定理可求ME,NE的長,即可求MN的長.【詳解】設MN與OP交于點E,

∵點O、P的距離為4,

∴OP=4

∵折疊

∴MN⊥OP,EO=EP=2,

在Rt△OME中,ME=在Rt△ONE中,NE=∴MN=ME-NE=2-故答案為2-【點睛】本題考查了翻折變換,勾股定理,利用勾股定理求線段的長度是本題的關鍵.12、【解析】

如圖,作輔助線;根據題意首先求出AB、BC的長度;借助面積公式求出A′D、OD的長度,即可解決問題.【詳解】解:∵四邊形OABC是矩形,∴OA=BC,AB=OC,tan∠BOC==,∴AB=2OA,∵,OB=,∴OA=2,AB=2.∵OA′由OA翻折得到,∴OA′=OA=2.如圖,過點A′作A′D⊥x軸與點D;設A′D=a,OD=b;∵四邊形ABCO為矩形,∴∠OAB=∠OCB=90°;四邊形ABA′D為梯形;設AB=OC=a,BC=AO=b;∵OB=,tan∠BOC=,∴,解得:;由題意得:A′O=AO=2;△ABO≌△A′BO;由勾股定理得:x2+y2=2①,由面積公式得:xy+2××2×2=(x+2)×(y+2)②;聯立①②并解得:x=,y=.故答案為(?,)【點睛】該題以平面直角坐標系為載體,以翻折變換為方法構造而成;綜合考查了矩形的性質、三角函數的定義、勾股定理等幾何知識點;對分析問題解決問題的能力提出了較高的要求.13、1【解析】

如圖,由勾股定理可以先求出AB的值,再證明△AED∽△ACB,根據相似三角形的性質就可以求出結論.【詳解】在Rt△ABC中,由勾股定理.得AB==10,∵DE⊥AB,∴∠AED=∠C=90°.∵∠A=∠A,∴△AED∽△ACB,∴,∴,∴AD=1.故答案為1【點睛】本題考查了勾股定理的運用,相似三角形的判定及性質的運用,解答時求出△AED∽△ACB是解答本題的關鍵.14、150【解析】

根據題意可得等量關系:不超過a千瓦時的電費+超過a千瓦時的電費=105元;根據等量關系列出方程,解出a的值即可.【詳解】∵0.5×200=100<105,∴a<200.由題意得:0.5a+0.6(200-a)=105,解得:a=150.故答案為:150【點睛】此題主要考查了一元一次方程的應用,關鍵是正確找出題目中的等量關系,列出方程.15、1【解析】試題分析:將x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.考點:一元二次方程的解.16、【解析】分析:找中位數要把數據按從小到大的順序排列,位于最中間的一個數(或兩個數的平均數)為中位數;眾數是一組數據中出現次數最多的數據,注意眾數可以不只一個.

詳解:∵-3,x,-1,3,1,6的眾數是3,

∴x=3,

先對這組數據按從小到大的順序重新排序-3、-1、1、3、3、6位于最中間的數是1,3,

∴這組數的中位數是=1.

故答案為:1.點睛:本題屬于基礎題,考查了確定一組數據的中位數和眾數的能力.一些學生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項,注意找中位數的時候一定要先排好順序,然后再根據奇數和偶數個來確定中位數,如果數據有奇數個,則正中間的數字即為所求,如果是偶數個則找中間兩位數的平均數.17、1【解析】

根據題意可以設出點A的坐標,從而以得到點C和點B的坐標,再根據的面積為1,即可求得k的值.【詳解】解:設點A的坐標為,過點C的直線與x軸,y軸分別交于點A,B,且,的面積為1,點,點B的坐標為,,解得,,故答案為:1.【點睛】本題考查了反比例函數系數k的幾何意義、一次函數圖象上點的坐標特征、反比例函數圖象上點的坐標特征,解題關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.三、解答題(共7小題,滿分69分)18、(1)y=100x+17360;(2)3種方案:A型車21輛,B型車41輛最省錢.【解析】

(1)根據租車總費用=A、B兩種車的費用之和,列出函數關系式即可;

(2)列出不等式,求出自變量x的取值范圍,利用函數的性質即可解決問題.【詳解】(1)由題意:y=380x+280(62-x)=100x+17360,∵30x+20(62-x)≥1441,∴x≥20.1,又∵x為整數,∴x的取值范圍為21≤x≤62的整數;(2)由題意100x+17360≤19720,∴x≤23.6,∴21≤x≤23,∴共有3種租車方案,x=21時,y有最小值=1.即租租A型車21輛,B型車41輛最省錢.【點睛】本題考查一次函數的應用、一元一次不等式的應用等知識,解題的關鍵是理解題意,學會利用函數的性質解決最值問題.19、(1)甲、乙兩種套房每套提升費用為25、1萬元;(2)甲種套房提升2套,乙種套房提升30套時,y最小值為2090萬元.【解析】

(1)設甲種套房每套提升費用為x萬元,根據題意建立方程求出其解即可;(2)設甲種套房提升m套,那么乙種套房提升(80-m)套,根據條件建立不等式組求出其解就可以求出提升方案,再表示出總費用與m之間的函數關系式,根據一次函數的性質就可以求出結論.【詳解】(1)設乙種套房提升費用為x萬元,則甲種套房提升費用為(x﹣3)萬元,則,解得x=1.經檢驗:x=1是分式方程的解,答:甲、乙兩種套房每套提升費用為25、1萬元;(2)設甲種套房提升a套,則乙種套房提升(80﹣a)套,則2090≤25a+1(80﹣a)≤2096,解得48≤a≤2.∴共3種方案,分別為:方案一:甲種套房提升48套,乙種套房提升32套.方案二:甲種套房提升49套,乙種套房提升31套,方案三:甲種套房提升2套,乙種套房提升30套.設提升兩種套房所需要的費用為y萬元,則y=25a+1(80﹣a)=﹣3a+2240,∵k=﹣3,∴當a取最大值2時,即方案三:甲種套房提升2套,乙種套房提升30套時,y最小值為2090萬元.【點睛】本題考查了一次函數的性質的運用,列分式方程解實際問題的運用,列一元一次不等式組解實際問題的運用.解答時建立方程求出甲,乙兩種套房每套提升費用是關鍵,是解答第二問的必要過程.20、(1);(2)當每套房贈送的裝修基金多于10560元時,選擇方案一合算;當每套房贈送的裝修基金等于10560元時,兩種方案一樣;當每套房贈送的裝修基金少于10560元時,選擇方案二合算.【解析】

解:(1)當1≤x≤8時,每平方米的售價應為:y=4000﹣(8﹣x)×30="30x+3760"(元/平方米)當9≤x≤23時,每平方米的售價應為:y=4000+(x﹣8)×50=50x+3600(元/平方米).∴(2)第十六層樓房的每平方米的價格為:50×16+3600=4400(元/平方米),按照方案一所交房款為:W1=4400×120×(1﹣8%)﹣a=485760﹣a(元),按照方案二所交房款為:W2=4400×120×(1﹣10%)=475200(元),當W1>W2時,即485760﹣a>475200,解得:0<a<10560,當W1<W2時,即485760﹣a<475200,解得:a>10560,∴當0<a<10560時,方案二合算;當a>10560時,方案一合算.【點睛】本題考查的是用一次函數解決實際問題,讀懂題目信息,找出數量關系表示出各樓層的單價以及是交房款的關系式是解題的關鍵.21、從2015年到2017

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論