




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
專題1-8立體幾何與空間向量十二大重點(diǎn)題型匯總
。常考題型目錄
題型1空間向量的概念............................................................1
題型2空間向量的線性運(yùn)算........................................................5
題型3空間向量的線性表示........................................................8
題型4空間向量的基本定理.......................................................13
題型5空間向量共線問題.........................................................16
題型6空間向量共面問題.........................................................19
題型7空間向量的數(shù)量積、夾角與模長問題........................................24
題型8空間向量的對(duì)稱問題.......................................................30
題型9利用空間向量證明位置關(guān)系.................................................34
題型10利用空間向量計(jì)算空間角..................................................43
題型11利用空間向量算距離......................................................53
題型12空間中的動(dòng)點(diǎn)問題........................................................62
但題型分類
題型1空間向量的概念
【例題1](2023?全國?高二專題練習(xí))已知正方體ABCD-的中心為。,則在下列
各結(jié)論中正確的共有()
①次+礪與痔+比7是一對(duì)相反向量;
②而-沆與而-亦是一對(duì)相反向量;
③瓦?+OB+OC+而與。不+OB7+OC7+亦是一對(duì)相反向量;
④布-耐與反-沆7是一對(duì)相反向量.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
【答案】C
【分析】根據(jù)向量線性運(yùn)算、相等向量和相反向量定義依次判斷各個(gè)選項(xiàng)即可.
對(duì)于①,ox=-0C7,~OD=-OB7,.-.OA+OD-(OB7+OC7),
OA+而與西+正是一對(duì)相反向量,①正確;
對(duì)于②,"OB-OC^CB,0^-0D7=DM7,又方=PM7,
OB-沆與而-而不是相反向量,②錯(cuò)誤;
對(duì)于③,"OA^-0C7,OB=-0D7,OC=-Ol7,OD=-OB7,
■.OA+OB+OC+OD--(OA1+OB7+OC7+OD7),
.■.OA+OB+OC+而與振+痔+玩7+正是一對(duì)相反向量,③正確;
777
又寸于④,-??OX-OX=XF/OC-OC-CC,又打=-CT,
???瓦尹-就與沆-正是一對(duì)相反向量,④正確.
故選:C.
【變式1-1]1.(2023秋?高二課時(shí)練習(xí))下列命題中為真命題的是()
A.空間向量荏與瓦?的長度相等
B.將空間中所有的單位向量移到同一個(gè)起點(diǎn),則它們的終點(diǎn)構(gòu)成一個(gè)圓
C.空間向量就是空間中的一條有向線段
D.不相等的兩個(gè)空間向量的模必不相等
【答案】A
【分析】由于向量的長度與向量的方向無關(guān),相反向量的長度相,由此可判斷AD,將空間
所有的單位向量平移到一個(gè)起點(diǎn),則它們的終點(diǎn)構(gòu)成一個(gè)球面,由此可判斷B,由向量與有
向線段的關(guān)系判斷c.
【詳解】對(duì)于A,因?yàn)榭臻g向量荏與瓦宿:為相反向量,所以空間向量荏與瓦?的長度相等,
所以A正確,
對(duì)于B力各空間所有的單位向量平移到一個(gè)起點(diǎn),則它們的終點(diǎn)構(gòu)成一個(gè)球面所以B錯(cuò)誤,
對(duì)于C,空間向量可以用空間中的一條有向線段表示,但空間向量不是有向線段,所以C
錯(cuò)誤,
對(duì)于D,兩個(gè)空間向量不相等,它們的模可能相等,也可能不相等,如向量屈與瓦?的模相
等,所以D錯(cuò)誤,
故選:A
【變式1-1]2.(2022?高二課時(shí)練習(xí))下列說法正確的是()
A.零向量沒有方向
B.空間向量不可以平行移動(dòng)
C.如果兩個(gè)向量不相同,那么它們的長度不相等
D.同向且等長的有向線段表示同一向量
【答案】D
【分析】根據(jù)零向量的規(guī)定可以確定A錯(cuò)誤;根據(jù)空間向量是自由向量可以確定B;根據(jù)
相等向量的定義可以確定C、D.
【詳解】對(duì)于A:零向量的方向是任意的,A錯(cuò)誤;
對(duì)于B:空間向量是自由向量可以平移,B錯(cuò)誤;
對(duì)于C、D:大小相等方向相同的兩個(gè)向量為相等向量即同一向量,
所以C中向量大小可以相等,只要方向不同即為向量不同,C錯(cuò)誤;D符合定義,正確.
故選:D.
【變式1-1]3.(多選)(2023秋湖北襄陽?高二襄陽五中校考開學(xué)考試)如圖所示,在長
方體A8CD—a/iGA中,2B=3,4。=2,441=1,則在以八個(gè)頂點(diǎn)中的兩個(gè)分別為始
A.單位向量有8個(gè)B.與荏相等的向量有3個(gè)
C.京的相反向量有4個(gè)D.模為畫的向量有4個(gè)
【答案】ABC
【分析】根據(jù)單位向量、相等向量、相反向量和向量的模的概念逐項(xiàng)分析可得答案.
【詳解】由題可知單位向量有初,而,西,瓦N,宿,京,西,取,共8個(gè),故
A正確;
與荏相等的向量有4瓦,即7,沆,共3個(gè),故B正確;
向量標(biāo)的相反向量有不,庭,京,瓦萬,共4個(gè),故C正確;
模為隗的向量分別為麗,用,碩,兩,M,而,瓦T,西,共8個(gè),故D錯(cuò)誤.
故選:ABC
【變式1-U4.(2021秋?高二課時(shí)練習(xí))給出下列幾個(gè)命題:
①方向相反的兩個(gè)向量是相反向量;
②若同=\b\,貝!=3或a=-b;
③對(duì)于任何向量a,b,必有同+b\<\a\+\b\.
其中正確命題的序號(hào)為.
【答案】③
【分析】根據(jù)相反向量的定義可以判斷①;兩個(gè)向量模相等,這兩個(gè)不一定是相等向量或相
反向量可以判斷②;通過對(duì)2,3同向,反向,不共線進(jìn)行分類討論,結(jié)合三角形法則和三
邊關(guān)系則可以判定③.
【詳解】對(duì)于①,長度相等且方向相反的兩個(gè)向量是相反向量,故①錯(cuò);
對(duì)于②,若悶=\b\,則a與笳勺長度相等,但方向沒有任何聯(lián)系,故②不正確;
對(duì)于③,若2與3同向,則口+臼=|a|+\b\,若2與刃反向,\d+b\<|a|+\b\,若2與另不
共線,結(jié)合三角形法則和三角形三邊關(guān)系,兩邊之和大于第三邊,所以n+b\<\a\+\b\,
綜上必有4+b\<\a\+\b\,所以③正確.
題型2空間向量的線性運(yùn)算
【例題2](2023秋?河北石家莊?高二石家莊二十三中校考期末)已知四面體ABC。,G是CD
的中點(diǎn),連接4G,則4B+1(BD+BC)=()
A?武B.德C.BCD.河
【答案】A
【分析】根據(jù)已知條件作出圖形,利用中點(diǎn)的向量的線性關(guān)系及向量加法法則即可求解.
【詳解】四面體48CD,G是CD的中點(diǎn),如圖所示,
R
因?yàn)镚是CD的中點(diǎn),
所以麗=式麗+配)
所以荏+^(BD+BC^)=AB+BG=AG.
故選:A.
【變式2-1]1.(2021秋?吉林長春?高二校聯(lián)考期末)空間任意五個(gè)點(diǎn)4B、C、D、E,
則科+AE+CD-CB+麗等于
A.DBB.ACC.ABD.~BA
【答案】D
【分析】將病化為求+施+瓦?,利用相反向量的和為零向量即可得結(jié)果.
【詳解】DA+AE+CD-CB+EA
=(DC+CB+BA")+CD-CB+(A£+IA)
=(DC+CD)+(CB-'CB)+^A+(AE+EA)=市,故選D.
【點(diǎn)睛】本題主要考查空間向量的運(yùn)算,意在考查靈活應(yīng)用所學(xué)知識(shí)解答問題的能力屬于簡
單題.
【變式2-1]2.(2023秋?北京?高二北京八中校考期末)如圖,在空間四邊形2BCD中,設(shè)
E,F分別是BC,CD的中點(diǎn),則同+*前-麗)=()
A.ADB.FAC.AFD.EF
A
【答案】c
【分析】利用空間向量的線性運(yùn)算求得正確結(jié)論.
【詳解】因?yàn)榫?RD=DC,|(BC-BD)=|DC=DF,
所以而+|(BC-BD)=AD+DF=AF.
故選:C
【變式2-1]3.(2020秋?內(nèi)蒙古烏蘭察布?高二校考期末)已知點(diǎn)4(4,1,3),5(2,-5,1),
若前=[荏,則點(diǎn)C的坐標(biāo)為()
A--(MF)C-?信-3,2)
【答案】B
【解析】設(shè)出c點(diǎn)坐標(biāo),根據(jù)尼=:說表示出坐標(biāo)之間的關(guān)系,則C點(diǎn)坐標(biāo)可求.
(%-4=|(2-4)(久=與
【詳解】設(shè)C(x,y,z),因?yàn)榍?:屈,所以卜-1=*-5-1),所以卜=:,所以
[z—3=*1—3)IZ=1
嗯,-1,9,
故選:B.
【變式2-1J4.(2020秋福建三明?高二校聯(lián)考期末)已知4(1,-2,0)和向量五=(-3,4,12),
SAB=2五,則點(diǎn)B的坐標(biāo)為
A.(-7,10,24)B.(7,-10,-24)C.(—6,8,24)D.(-5,6,24)
【答案】D
【分析】根據(jù)五=(-3,4,12),SAB=2d,可得荏的值,同時(shí)已知4(1,-2,0),可得B的坐
標(biāo).
【詳解】解:?.?五=(-3,4,12),且布=2a,XB=(-6,8,24),
4(1,一2,0),山=(-6+1,8-2,24+0)=(-5,6,24),
故選D.
【點(diǎn)睛】本題考查空間向量的數(shù)乘運(yùn)算,是一個(gè)基礎(chǔ)題,解題的關(guān)鍵是牢記公式,在數(shù)字運(yùn)
算的時(shí)候要細(xì)心.
【變式2-1]5.(2020秋?寧夏銀川?高二寧夏育才中學(xué)校考期末)已知五=(2,-3,1),b=
(2,0,3),c=(1,0,2),則五+6b—8c—____.
【答案】(6,-3,3)
【解析】先計(jì)算8?,再計(jì)算五+63-8卿得解.
【詳解】由于拓=(12,0,18),8c=(8,0,16),故五+6h-8c=(6,-3,3).
【點(diǎn)睛】本題考查了向量的線性運(yùn)算的坐標(biāo)表示,考查了學(xué)生數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.
題型3空間向量的線性表示
【例題3](2023春?江蘇?高二期末)如圖,在四面體OABC中,布="布=39=,點(diǎn)
M在OA上,且滿足麗=3MA,N為BC的中點(diǎn),則而=()
A1-?37^1-?Q2->17^1->廠1->2個(gè)3-?17^1-?
A.-a——D+-cD.——a+-b+-cC.-a——b+-cU.——a+-D+-c
242322232422
o
【答案】D
【分析】根據(jù)空間向量的加法和減法的三角形法則得到.
【詳解】如圖,連接ON,
N是8c的中點(diǎn),二赤=:而+3瓦,
------>------>------>a—?
???0M=3MA,??.OM=-OA,
'4'
~MN=~ON-OM=-OB+-OC--OA=--a+-b+-c.
224422
故選:D.
【變式3-1]1.(2023秋?安徽黃山?高二統(tǒng)考期末)如圖,在三棱柱ABC-A/】G中,E、
F分別是BC、CG的中點(diǎn),G為A48c的重心,則謂=()
人.號(hào)荏+|元+|磯B*荏+|元+]痂
C.-^AB+^AC-^AAlD一樂,就+工砧
33213321
【答案】A
【分析】根據(jù)向量的數(shù)乘及加、減運(yùn)算求解即可.
【詳解】解:由題意可得:
蕭=謠+而
1一1—,
=-AE+-3^
321
11__>__>1__>___?
=2x2(48+4。)+2(BC+BB】)
111
=-AB-^--AC+-(AC-AB+
662
1—2一1—>
=--AB+-AC+-BB
3321
=--AB+-AC+-AA1.
3321
故選:A.
【變式3-1]2.(2023秋?廣西防城港?高二統(tǒng)考期末)如圖,設(shè)。為平行四邊形ZBCD所在
平面外任意一點(diǎn),E為。C的中點(diǎn),若布=lOD^xOA+yOB,貝詠+y的值是()
A.-2B.0C.-1D.-
2
【答案】B
【分析】根據(jù)向量的線性運(yùn)算的幾何表示,得出荏=|OO+|OB-|OX,結(jié)合條件即可得
出答案.
【詳解】E為。C的中點(diǎn),
???OE=|OC=|(OD+DC),
,?四邊形48CD為平行四邊形,:.沆=荏,
.-.0E=-(OD+AB)=-COD+OB-OA)=-~OD+-OB--OA.
2、J2v7222
T1T--
OE=-OD+xOA+yOB,
11
%,y=——,
2'72'
???比+y=0,
故選:B.
【變式3-1]3.(2023秋?湖北黃岡?高二統(tǒng)考期末)如圖,已知空間四邊形0ABe,M,N
分別是邊OA,BC的中點(diǎn),點(diǎn)G滿足前=2GN,設(shè)瓦?=a,OB,OC=c,則而=()
A1-??17*?1Q1.1'L?1-??-1.17*.1-?rs1.1?1->
A.-ad—bH—cB.—ad—b—cQ.-ad—b—cD.—ad—bH—c
333633366666
【答案】B
【分析】根據(jù)向量的線性運(yùn)算一步步將向量前化為關(guān)于通,OB,OC,即可整理得出答案.
【詳解】OG+MG^OA+jMW=+j(AM+AB+BN),
=河+1(源+而一或+x),
=+1[|ol+OB-OA+^(OC-OB)],
/成+:而+!灰,
1,11.1
=-ad—b4—c.
633
故選:B
【變式3-1J4.(2023秋?北京?高二中央民族大學(xué)附屬中學(xué)校考期末庭平行六面體ABCD-
中,點(diǎn)M:兩足224M=AC.右=a,=b,A^A=c,則下列向量中與相
等的是()
A.-a--b+cB.-a+-b+c
2222
/-1->?17^.->pvl-?17^?->
C.——a+-D+cD.——a——b+c
2222
【答案】C
【分析】結(jié)合圖形,由空間向量的線性運(yùn)算可得.
由點(diǎn)M滿足2前=AC,所以M為4C中點(diǎn),
因?yàn)樗倪呅蜛BCD為平行四邊形,所以M為BD中點(diǎn),
所以前=[麗-|(BX+BC)=|(-a+fa),
所以Bi"=B]B+BM=c+|(—a+b)=—|a+|b+c.
故選:C
【變式3-1]5.(2021秋?湖北宜昌?高二葛洲壩中學(xué)校考期末)在棱長為1的正方體力BCD-
為B1GD1中,E,F,G分別在棱BBi,8C,BA上,且滿足旗=:蔣,BF=^BC,BG=^BA,
0是平面8m尸,平面ACE與平面的一個(gè)公共點(diǎn),設(shè)前=xBG+yBF+zBE,則x+
y+z=
A.iB.-C.-D.-
5555
【答案】B
【分析】利用空間向量的共面定理可得麗在不同基底下的表示方法,從而可求.
【詳解】因?yàn)辂?xBG+yBF+zBE=xBG+yBF+%兩,。在平面/GF內(nèi),
4
所以%+y+Y=1洞理可得弓+^+z=l,K=y,解得x=y=|,z=|,故選B.
4zZ5b
【點(diǎn)睛】本題主要考查空間向量的共面定理利用四點(diǎn)共面的特點(diǎn),建立等量關(guān)系式是求解
關(guān)鍵.
題型4空間向量的基本定理
【例題4】(2023春?河南開封?高二統(tǒng)考期末)若尼石,可構(gòu)成空間的一個(gè)基底,則下列向量
可以構(gòu)成空間基底的是()
A.a+b,a—b,aB.d+b,a—b,bC.d+b,d—b,b+cD.a+b,d+b+c,c
【答案】C
【分析】根據(jù)空間基底的概念逐項(xiàng)判斷,可得出合適的選項(xiàng).
【詳解】對(duì)于A,a=1[(a+b)+(a-b)],因此向量五+b,a-b,3共面,故不能構(gòu)成基底,
故A錯(cuò)誤;
對(duì)于B,b=1[(a+fa)-(a-fa)],因此向量2+b,a-b,3共面,故不能構(gòu)成基底,故B錯(cuò)
誤;
對(duì)于C,假設(shè)向量2+b,a-b,b+洪面,則3+c-A(a+b)+g(a-b),
即己=(4+〃/+(4-〃-1)K,這與題設(shè)矛盾,假設(shè)不成立,可以構(gòu)成基底,故C正確;
對(duì)于D,0+3)+3=N+3+葭因此向量d+b,a+b+共面,故不能構(gòu)成基底,故D
錯(cuò)誤;
故選:C.
【變式4-1]1.(2020秋?河南信陽?高二統(tǒng)考期末)已知N=(2,-1,3),b=(-1,4,-2),
c=(7,5,2),若代,b,R不能構(gòu)成空間的一個(gè)基底,則實(shí)數(shù)A的值為()
A.0B.-C.9D.-
77
【答案】D
【分析】依題意可得匕b,洪面,則,^xa+yb,其中CR,根據(jù)空間向量坐標(biāo)運(yùn)算得到
方程組,解得即可.
【詳解】"{a,b,遜不能構(gòu)成空間的一個(gè)基底,???a,b,洪面,則}=xa+yb,其中%,y&R,
貝!](75入)=(2%,一居3%)+(-y,4y,-2y)=(2x-y,—%+4y,3x-2y),
33
f7=2x—y7
5=-x+4y,解得17
7?
A=3%—2y65
7
故選:D.
【變式4-1]2.(2023秋?云南大理?高二統(tǒng)考期末)若{瓦石,可}是空間的一個(gè)基底,且向
量付1=西+石+百赤=及-2瓦+2國方=國+3孩+福}不能構(gòu)成空間的一個(gè)基
底,貝心=()
A.-B.-C.-iD.-
3244
【答案】D
【分析】由題意可知,向量力1OB.沆共面,則存在實(shí)數(shù)以y使得沆=x瓦?+y赤,根
據(jù)空間向量的基本定理可得出關(guān)于乂y、k的方程組,即可解得k的值.
【詳解】因?yàn)橄蛄縜=%+石+百,麗=瓦-2瓦+2月,灰=砥*+3/+2可不能構(gòu)
成空間的一個(gè)基底,
所以就、OB.方共面,故存在實(shí)數(shù)八y使得1^xOA+yOB,
BPke^+3可+2eJ=x(e^+可+瓦)+y(前一2石+2可)=(%+y)否+(%—2y)eJ+
(%+2y)五,
,(x=-5
Jc=%+y2
因?yàn)椋?,石,石}是空間的一個(gè)基底,則久—2y=3,解得[y=—[.
、%+2y=29
\k=-
I4
故選:D.
【變式4-1]3.(多選)(2023秋?山西晉中?高二統(tǒng)考期末)色,b,4是空間的一個(gè)基底,與
N+&2+群勾成基底的一個(gè)向量可以是()
A.h+cB.b—cC.bD.c
【答案】ACD
【分析】根據(jù)空間向量基本定理判斷即可.
【詳解】由于3-c=a+b-(a+c),故3-3與2+3、2+3共面,無法構(gòu)成空間的一個(gè)基
底,故B錯(cuò)誤;
因?yàn)閮?yōu)b,可是空間的一個(gè)基底,由于不存在實(shí)數(shù)對(duì)x、y,使得刃+/=久(2+&+y(a+c),
‘%+y=0
若成立則x=i,顯然方程組無解,故3+石、d+芯z+何以作為空間的一個(gè)基底,
.y=1
故A正確,同理可得C、D正確;
故選:ACD
【變式4-1]4.(多選)(2022秋廣東深圳?高二深圳外國語學(xué)校校考期末)設(shè)何24是
空間一個(gè)基底,則下列選項(xiàng)中正確的是()
A.若NLb,blc,則21c
B.a+c,b+c,c+N一定能構(gòu)成空間的一^基底
C.對(duì)空間中的任一向量力,總存在有序?qū)崝?shù)組Q,y,z),使萬^xa+yb+zc
D.存在有序?qū)崝?shù)對(duì),使得,^xa+yb
【答案】BC
【分析】根據(jù)空間向量的基本定理,對(duì)選項(xiàng)中的命題進(jìn)行分析、判斷正誤即可.
【詳解】對(duì)于A.alb.blc,不能得出21c,也可能是2辭目交不一定垂直,選項(xiàng)A錯(cuò)
誤;
對(duì)于B,假設(shè)向量2+b,b+c,c+2共面,貝!B=x(b+c)+y(c+d),%、y€R,
化簡得(X+y)c=(1-x)b+(1-y)a,所以A石、洪面,這與已知矛盾,所以選項(xiàng)B正確;
對(duì)于C,根據(jù)空間向量基本定理知,對(duì)空間任一向量力,總存在有序?qū)崝?shù)組(x,y,z),使方=乂2+
yb+zc,選項(xiàng)C正確;
對(duì)于D,因?yàn)椋?,鐘是空間一個(gè)基底,所以d與唬3不共面,選項(xiàng)D錯(cuò)誤.
故選:BC.
題型5空間向量共線問題
【例題512023春?甘肅白銀?高二校考期末股向量/百石不共面,已知前=前+石+石,
前=瓦+2/+百,而=4瓦>+8瓦+4瓦,若人,(:,口三點(diǎn)共線,貝[U=()
A.1B.2C.3D.4
【答案】C
【分析】根據(jù)A,C,D三點(diǎn)共線,可得前/標(biāo),則存在唯一實(shí)數(shù)〃,使得前=〃而,再
根據(jù)空間向量共線定理即可得解.
【詳解】由屈=e7+e7+e;,BC=e7+2e;4-e;,
得=荏+阮=2區(qū)+(1+2)孩+2久,
因?yàn)锳,C,D三點(diǎn)共線,所以就〃而,
則存在唯一實(shí)數(shù)〃,使得前=fiCD,
2=44r_1
則1+4=8〃,解得"=5.
.2=4/z(4=3
故選:C.
【變式5-1]1.(2022秋?吉林四平?高二四平市第一高級(jí)中學(xué)校考期末)已知引是空
間的—個(gè)基底,若沅—a.+2b—3c,n-x(a+b)—y(b+c)+3(a+c),若沅||n,則:=()
A.-3B.-iC.3D.-
33
【答案】C
【分析】由沅II元,可得存在實(shí)數(shù)4,使元=Am,然后將沅,元代入化簡可求得結(jié)果
【詳解】m=a+2b—3c,n=x(a+3)—y(b+c)+3(5+?)=(%+3)a+(%—y)b+
(3-y)c,
因?yàn)樵LIIn,所以存在實(shí)數(shù)4,使元=Am,
所以(%+3)a+(x—y)b+(3—y)c=A(a+2b—3c),
'%+3=A
所以%-y=24,
、3—y=-3A
所以y了;21工
,得2久-I-2y=3x—y,x=3y,
(3—y——31%-rDj
所以:=3,
故選:C
【變式5-1]2.(多選)(2023春?安徽滁州?高二校考期末)如圖,在三棱隹WC-ABC
中,P為空間一點(diǎn),目滿足喬=ABC+〃西,e[0,1],則()
A.當(dāng)2=1時(shí),點(diǎn)P在棱BBi上B.當(dāng)白=1時(shí),點(diǎn)P在棱ZG上
C.當(dāng)4+〃=1時(shí),點(diǎn)P在線段/C上D.當(dāng)2=“時(shí),點(diǎn)P在線段8G上
【答案】BCD
【分析】由空間向量共線定理逐一判斷即可求解
【詳解】當(dāng)2=1時(shí),麗=就+〃西,所以而=曲瓦,
則而〃西,即P在棱CC1上,故A錯(cuò)誤;
同理當(dāng)〃=1時(shí),貝,故P在棱BiG上,故B正確;
當(dāng)4+〃=1時(shí),〃=1一4,所以前=XBC+(1-4)西,即瓦?=AB^C,
故點(diǎn)P在線段BiC上,故C正確;
當(dāng)4=〃時(shí),前=A(BC+西)=ZBQ,故點(diǎn)P在線段EC1上,故D正確.
故選:BCD
【變式5-1]3.(2021秋?陜西渭南?高二統(tǒng)考期末)若向量2=(-4,2,1)與向量3=(2,x,y)
共線,貝股-y=.
【答案】-|/-0.5
【分析】根據(jù)向量共線基本定理,可設(shè)N=焉"eR,列出方程組,即可求得%和y的值,進(jìn)
而求出比-y的值.
【詳解】由向量B=(-4,2,1)與向量3=(2,x,y)平行,
可設(shè)N—Ab,AGR,
(一4=22=-i
則12=xA,解得|v_i,
(l=yA(y~~2
所以x-y=-1+|=-
故答案為:-/
【變式5-1]4.(2023秋?湖南長沙?高二統(tǒng)考期末)已知向量五=(1,5,-1)5=(-2,3,5).
(1)若(k五+b)//(a-3b),求k的值;
(2)以坐標(biāo)原點(diǎn)。為起點(diǎn)作a=a,OB=b,求點(diǎn)。到直線AB的距離d.
【答案】(l)k=—J(2)d=萼.
【分析】(1)根據(jù)空間向量的坐標(biāo)運(yùn)算與平行滿足的性質(zhì)求解即可;
(2)先求而在屈上的投影,再根據(jù)勾股定理求解d即可
【詳解】(1)放+/=(1-25k+3,-fc+5),
五一3*=(1+3x2,5-3x3,-1-3x5)=(7,-4,-16)
???(fca+/))//(?-3b)
一=啰=簧,即f+8=35k+21,
解得k=-|.
(2)由條彳牛知4(1,5,2,3,5),
:.A0=(-1,-5,1),AB=(-3,-2,6)
AO-AB=(-1)-(-3)+(-5)-(-2)+1X6=19,|AB|=J(-3)2+(-2/+6?=
7,
故而在荏上的投影為,又I而|2=(-1)2+(—5)2+12=27
.?點(diǎn)。到直線4B的距離d
題型6空間向量共面問題
【例題6](2020秋?寧夏銀川?高二寧夏育才中學(xué)校考期末)A,B,C三點(diǎn)不共線,對(duì)空間
..12T1T1T
內(nèi)任意一點(diǎn)O,若。P=”a+*8+*C)!JP,A,B,C四點(diǎn)()
4oo
A.一定不共面B.一定共面C.不一定共面D.無法判斷是否共面
【答案】B
【分析】利用空間向量共面定理即可判斷
【詳解】因?yàn)椤^-OA+-OB+-0C,則。P—。a=--OA+-OB+-0C
488488
TT1TT1TT
即。P-OA^-(OB-OA)+-(0C-OA)
88
--i~-
^AP=-AB+-AC
88
—>—>—>
由空間向量共面定理可知,共面,則P,A,B,C四點(diǎn)一定共面
故選:B
【變式6-1]1.(多選)(2020秋?山東煙臺(tái)?高二統(tǒng)考期末)已知A,B,C三點(diǎn)不共線,
0為平面ABC外的任一點(diǎn),則"點(diǎn)M與點(diǎn)A,B,C共面”的充分條件的是()
A.W=20A-OB-OCB.OM^OA+OB-0C
C.OM=OA+-~OB+-0CD.OM=-OA+-~0B+-OC
23236
【答案】BD
【解析】根據(jù)“麗xOA+yOB+z瓦時(shí),若%+y+z=1則點(diǎn)M與點(diǎn)4B,C共面",分
別判斷各選項(xiàng)是否為充分條件.
【詳解】當(dāng)加=mMB+n前時(shí),可知點(diǎn)M與點(diǎn)48,C共面,
所以詬+市=m(MO+OF)+n(MO+0C),
所以0+y-1)W=-0A+xOB+yOC,
所以礪=礪+屈=一_+^—OB+^—OC.
m+n-1m+n-1m+n-1m+n-1
不妨令--m-+7n—-1=X,m+rn-1I=/y'm+,n-1,=z,且此時(shí)X+/y+z=1,
因?yàn)?+(-1)+(-1)=OH1,1+1+(-1)=1,+3+9+
Z5oZoo
由上可知:BD滿足要求.
故選:BD.
【點(diǎn)睛】本題考查利用空間向量證明空間中的四點(diǎn)共面,難度一般.常見的證明空間中四點(diǎn)
共面的方法有:(1)證明標(biāo)=xMB+yMC;⑵對(duì)于空間中任意一點(diǎn)。,證明麗=
0A+xMB+yMC;(3)對(duì)于空間中任意一點(diǎn)。,證明。M=xOA+yOB+zOC(x+y+z—
1).
【變式6-1]2.(2023春?福建莆田?高二統(tǒng)考期末)若點(diǎn)Pe平面4BC,且對(duì)空間內(nèi)任意一
點(diǎn)。滿足加=^0A+WB+10C,則%的值是()
4o
A.--B.--C.-D.-
8888
【答案】D
【分析】根據(jù)條件得出P,4,B,C四點(diǎn)共面,再根據(jù)=^OA+AOB+1反即可求出2的
48
值.
【詳解】???pe平面ABC,
■-P,A,B,C四點(diǎn)共面,
又加=-OA+MB+-OC,
48
.??[+[+2=1,解得A—|?
故選:D.
或者根據(jù);pe平面ABC,.-.P,A,B,C四點(diǎn)共面,則存在實(shí)數(shù)居y,使得^xPB+yPC,
即市-OP=x(OB-0P)+y(OC-0P)0(1-x—y)OP=0A-xOB-yOC,
"1—x—y=4,
又4加=0A+4AOB+-0C,所以1-x=2,解得力=§
218
l-、=5,
故選:D
【變式6-1]3.(2023秋遼寧丹東?高二統(tǒng)考期末)已知空間向量2=(-2,1,-4),b=
(1,-1,2),c=(一7,—5,m)若,a,b,洪面,則實(shí)數(shù)爪的值為()
A.-14B.6C.-10D.12
【答案】A
【分析】根據(jù)向量共面,建立方程組,解得答案.
,—2=x—7y
【詳解】由五,3,洪面,可設(shè)立=xb+yc,1=-X-5y,
—4=2%+my
'_17
由/=:一£,解得“一一六,代入第三個(gè)方程可得:一4=一?+*解得m=-14.
U——x—oyv=—612
I'12
故選:A.
【變式6-1]4.(2023秋?重慶長壽?高二統(tǒng)考期末)已知空間三點(diǎn)坐標(biāo)分別為4(1,1,1),
5(0,3,0),C(-2,-1,4),點(diǎn)P(-3,%,1)在平面ABC內(nèi),則實(shí)數(shù)比的值為
【答案】y
【分析】根據(jù)題意,存在實(shí)數(shù)尢〃使得等式點(diǎn)=AAB+〃前成立,將各點(diǎn)坐標(biāo)代入,列出方程組
求解即可.
【詳解】???點(diǎn)P(-3,久,1)在平面ABC內(nèi),
二存在實(shí)數(shù)4,4使得等式衣=4屈+〃就成立,
???(—4,x-1,0)=2(—1,2,-1)+〃(-3,—2,3),
-4=-A—3/1
%—1=24—2〃,解得
0=-A+3〃
故答案為:y
【變式6-1]5.(2021?全國?高二期末)如圖,已知O、A、B、C、D、E、F、G、H為空間的9個(gè)
點(diǎn),且。E=kOA,OF=kOB,OH=kOD,AC=AD+mAB,EG=EH+mEF,k,mER.
(1)A、B、C、D四點(diǎn)共面,E、F、G、H四點(diǎn)共面;
⑵宿廊;
(3)OG=kOC.
【答案】(1)證明見解析
(2)證明見解析
(3)證明見解析
【分析】(1)利用空間向量基本定理證明即可,
(2)由麗^EH+mEF,結(jié)合空間向量的減法和數(shù)乘運(yùn)算可得說=kAC,從而可證得結(jié)
論,
(3)由麗=麗-麗,結(jié)合(2)中的結(jié)論與荏=k瓦I可得證
【詳解】(1)因?yàn)樾?通+mAB,EG^EH+mEF,
所以由共面向量定理可得前,而,同是共面向量,麗,麗,而是共面向量,
因?yàn)榍埃笥泄颤c(diǎn)4,詬,麗,而有公共點(diǎn)E,
所以A、B、C.D四點(diǎn)共面,E、F、G、H四點(diǎn)共面,
(2)因?yàn)檎f=麗+mEF^OH-OE+m(0F-0E)
=k(0D-OX)+km(OB-OA)
=kAD+kmAB=k^AD+mAB')=kAC,
所以前II麗;
(3)OG=OF+EG=kOA+kAC=k(0A+硝=kOC
【變式6-1]6.(2022秋廣東深圳?高二統(tǒng)考期末)如圖,在正方體ABCD-a/iGA中,
M,N,E,F分別為棱2B,BC,44i,DiC的中點(diǎn),連接CD1,EM,MN,EN,NF,EF.
(1)證明:〃平面EMN;
⑵證明:E,F,N,M四點(diǎn)共面.
【答案】(1)證明見解析
(2)證明見解析
【分析】(1)建立空間直角坐標(biāo)系,利用空間向量平行的性質(zhì),結(jié)合線面平行的判定定理
進(jìn)行證明即可;
(2)根據(jù)空間共面定理進(jìn)行證明即可.
【詳解】(1)設(shè)正方體的棱長為2,如圖建立空間直角坐標(biāo)系:
則。(0,0,0),4(2,0,0),C(0,2,0),B(2,2,0),5(0,0,2),4式2,0,2),Q(0,2,2),(2,2,2),
則M(2,l,0),N(l,2,0),£(2,0,1),F(0,1,2),
D^C=(0,2,-2),,
則有aZ=-2ME,故。,
因?yàn)镼CC平面EMN,MEu平面EMN,
則有AC〃平面EMN;
(2)麗=(-2,1,1),EM=(0,1,-1),£W=(-1,2,-1),
則有麗=-3EM+2EN,則向量而、前、前共面,
必有E,F,N,M四點(diǎn)共面
題型7空間向量的數(shù)量積、夾角與模長問題
【例題7](2023秋?內(nèi)蒙古包頭?高二統(tǒng)考期末)如圖,平行六面體ABC。-&B1GA所有
棱長都為1,底面4BCD為正方形,乙4MB=乙=60°.則對(duì)角線力G的長度為()
A.V6B.V5C.2D.V3
【答案】B
【分析】利用基底法求解即可.
【詳解】由題知宿=樂+而+理,
222
所以溫=(AB+AD+AA-J)=AB2+AD2+麗+2AB-AD+2AD-初+2標(biāo)-AB
2
^AB2+AD2+AAi+2|AB|-|^4D|cos90°+2|AD|-|A47|COS60°+2|A4^|?|^4B|COS60°=
1+1+1+04-1+1=5,
所以McJ=Vs,即AC1=Vs.
故選:B.
【變式7-1]1.(2023春?江蘇鎮(zhèn)江?高二江蘇省鎮(zhèn)江第一中學(xué)校考期末)如圖,二面角4-
EF-C的大小為45。,四邊形ABFE、CDEF都是邊長為1的正方形,則8、。兩點(diǎn)間的距離是
()
A.V2B.V3C.73-V2D.內(nèi)+企
【答案】C
【分析】利用二面角的定義可得出乙4£。=45。,由空間向量的線性運(yùn)算可得出)=育-
ED+AB,利用空間向量數(shù)量積的運(yùn)算性質(zhì)可求得|麗|,即為所求.
【詳解】因?yàn)樗倪呅?BFE、CDEF都是邊長為1的正方形,則AE1EF,DE1EF,
又因?yàn)槎娼茿-EF-C的大小為45。,即乙4ED=45。,則低X前}=45。,
因?yàn)辂恀DE+KA+AB^KA-^D+AB,由圖易知說1EA,AB1ED,
所以,\DB\=l(EA-ED+AB)2=y/EA2+ED2+AB2-2EA-ED+,ZEA-AB-2ED-AB
Vl+l+l-2xlxlxcos45°+0-0-
故選:C.
【變式7-1J2{2023春?四川?高二統(tǒng)考期末)如圖所示,平行六面體ABCD-中,
以頂點(diǎn)A為端點(diǎn)的三條棱長都為1,且兩兩夾角為60。,求西?前的值是()
A.-1B.1C.V2D.V3
【答案】B
【分析】選定基底,根據(jù)空間向量的加減運(yùn)算表示出西,前,再根據(jù)空間向量的數(shù)量積的
運(yùn)算,即可求得答案.
【詳解】由題意得珂=瓦?+而+西^AD-AB+AA1,AC^AB+AD,
則西-AC=(AD-AB+麗j.港+AD)=AD2-AB2+AA^-AB+AA^-AD
=l-l+lxlxCOS60°+1x1xCOS60°=1,
故選:B
【變式7-1]3.(多選)(2021秋?江蘇?高二校聯(lián)考期末)在三維空間中,定義向量的外積:
ax3叫做向量2與笳勺外積,它是一個(gè)向量,滿足下列兩個(gè)條件:
①210x司10x司,且2,b^\ax訴勾成右手系(即三個(gè)向量的方向依次與右手的
拇指、食指、中指的指向一致,如圖所示);
②aX3的模區(qū)xb\=同向sin值㈤(值,3)表示向量日,3的夾角).
在正方體ABCD-A1B1C1D1中,有以下四個(gè)結(jié)論,正確的有()
A.|ABtxAC\=\ADrx~DB\B.&C;x幣與西共線
C.ABxAD=ADxABD.6|就x與正方體表面積的數(shù)值相等
【答案】ABD
【分析】根據(jù)所給的新定義及正方體的性質(zhì)——計(jì)算可得.
【詳解】對(duì)于A,對(duì)于A,設(shè)正方體的棱長為1,在正方體中(福,灰)=60。,
貝“耐=|福||Z?kin(福,尼)=V^x&xf=V5,
因?yàn)锽Zy/Bi/,且乙=60°,所以(河,麗)=120°,
所以|礪x函=|河口函sin舊瓦函=V2xV2Xy=V3,
所以|福xXC|=\ADlx~DB\,所以A正確;
對(duì)于B,在正方形42164中,4G1%必,又因?yàn)?4,平面4/165,4Gu平面
AyB-^C-yD^,所以241clJ-BB],
又B[BClB]D1=B1,B]B,B]D1u平面夕//。,所以①6_L平面BBi/D,
因?yàn)锽Qu平面BB/iO,所以BO】_LArCr,同理可證_LA±D,
再由右手系知,砧x碩與可同向,所以B正確;
對(duì)于C,由2,群口Rx3構(gòu)成右手系知,2X刃與反x2方向相反,
又由江X1模的定義知,,x同=|a||b|sin(a,b)—同同sin值,研—\bxd\,
所以Nxb^-bxa,貝!|詬x前=-ADxAB,所以C錯(cuò)誤;
對(duì)于D,設(shè)正方體棱長為a,6\BCxAC\—6|BC||XC|?
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 注冊(cè)會(huì)計(jì)師考試技巧與試題及答案
- 行政管理師考試內(nèi)容回顧試題及答案
- 項(xiàng)目管理有效溝通技巧試題及答案
- 快樂課堂幼兒園小班班級(jí)工作計(jì)劃
- 強(qiáng)化自我學(xué)習(xí)與知識(shí)管理計(jì)劃
- 注冊(cè)會(huì)計(jì)師考試每科復(fù)習(xí)要點(diǎn)試題及答案
- 如何建立有效的行政管理師考試復(fù)習(xí)反饋機(jī)制試題及答案
- 復(fù)習(xí)項(xiàng)目管理五大過程的考題試題及答案
- 補(bǔ)充2025年國際金融理財(cái)師考試知識(shí)試題及答案
- 2025版高考語文一輪復(fù)習(xí)課時(shí)作業(yè)15含解析
- 經(jīng)尿道前列腺剜除術(shù)講解
- 電影音樂欣賞智慧樹知到答案章節(jié)測(cè)試2023年華南農(nóng)業(yè)大學(xué)
- 傳感器原理與應(yīng)用智慧樹知到答案章節(jié)測(cè)試2023年山東大學(xué)(威海)
- 工程熱力學(xué) 09氣體動(dòng)力循環(huán)-wyz-2013
- 檢驗(yàn)索賠仲裁和不可抗力
- 全旅館業(yè)前臺(tái)從業(yè)人員資格證考試答案解析
- 專業(yè)工程分包業(yè)主審批表
- 活動(dòng)物料清單
- 08S305-小型潛水泵選用及安裝圖集
- 缺血缺氧性腦病詳解課件
- 自動(dòng)打鈴控制器plc課程設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論