成都藝術(shù)職業(yè)大學(xué)《綜合評價》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
成都藝術(shù)職業(yè)大學(xué)《綜合評價》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
成都藝術(shù)職業(yè)大學(xué)《綜合評價》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
成都藝術(shù)職業(yè)大學(xué)《綜合評價》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

站名:站名:年級專業(yè):姓名:學(xué)號:凡年級專業(yè)、姓名、學(xué)號錯寫、漏寫或字跡不清者,成績按零分記。…………密………………封………………線…………第1頁,共1頁成都藝術(shù)職業(yè)大學(xué)《綜合評價》

2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、對于一個時間序列數(shù)據(jù),若要預(yù)測未來幾個時間點的值,以下哪種模型較為適用?()A.移動平均模型B.指數(shù)平滑模型C.自回歸模型D.以上都可以2、在數(shù)據(jù)分析的模型評估中,假設(shè)建立了一個預(yù)測模型,需要評估其性能。除了準(zhǔn)確率,以下哪個評估指標(biāo)對于衡量模型的泛化能力可能更重要?()A.召回率,衡量模型找到正例的能力B.F1值,綜合考慮準(zhǔn)確率和召回率C.均方誤差,用于連續(xù)值的預(yù)測D.不關(guān)注評估指標(biāo),認為模型是完美的3、在數(shù)據(jù)分析中,深度學(xué)習(xí)模型在處理復(fù)雜數(shù)據(jù)方面表現(xiàn)出色。假設(shè)我們要使用深度學(xué)習(xí)進行圖像識別。以下關(guān)于深度學(xué)習(xí)在數(shù)據(jù)分析中的描述,哪一項是錯誤的?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN)是常用于圖像識別的深度學(xué)習(xí)模型B.深度學(xué)習(xí)模型需要大量的訓(xùn)練數(shù)據(jù)和計算資源C.深度學(xué)習(xí)模型的訓(xùn)練過程簡單,不需要進行調(diào)優(yōu)和優(yōu)化D.深度學(xué)習(xí)可以與傳統(tǒng)的數(shù)據(jù)分析方法結(jié)合,提高分析效果4、在數(shù)據(jù)分析中,如果想要比較兩個獨立樣本的均值是否有顯著差異,應(yīng)該使用哪種檢驗方法?()A.t檢驗B.方差分析C.卡方檢驗D.秩和檢驗5、在數(shù)據(jù)分析中,假設(shè)檢驗是常用的方法之一。在進行雙側(cè)檢驗時,如果P值小于0.05,我們可以得出什么結(jié)論?()A.拒絕原假設(shè)B.接受原假設(shè)C.無法得出結(jié)論D.原假設(shè)可能成立6、關(guān)于數(shù)據(jù)分析中的數(shù)據(jù)降維,假設(shè)數(shù)據(jù)集具有高維度,但其中可能存在冗余和無關(guān)的特征。為了減少計算復(fù)雜度并提高分析效率,以下哪種降維方法可能是有效的?()A.主成分分析(PCA),提取主要成分B.線性判別分析(LDA),考慮類別信息C.局部線性嵌入(LLE),保留局部結(jié)構(gòu)D.不進行降維,直接處理高維數(shù)據(jù)7、在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理包括數(shù)據(jù)標(biāo)準(zhǔn)化、歸一化等操作。假設(shè)要對不同量級的數(shù)據(jù)進行處理,以下關(guān)于數(shù)據(jù)預(yù)處理的描述,哪一項是不準(zhǔn)確的?()A.標(biāo)準(zhǔn)化可以將數(shù)據(jù)轉(zhuǎn)換為均值為0,標(biāo)準(zhǔn)差為1的分布,使得不同特征具有可比性B.歸一化可以將數(shù)據(jù)映射到特定的區(qū)間,如[0,1],但可能會改變數(shù)據(jù)的分布C.數(shù)據(jù)預(yù)處理對后續(xù)的分析和建模影響不大,可以根據(jù)個人喜好選擇是否進行D.對于數(shù)值型數(shù)據(jù)和分類型數(shù)據(jù),需要采用不同的數(shù)據(jù)預(yù)處理方法8、在構(gòu)建數(shù)據(jù)分析模型時,特征工程起著關(guān)鍵作用。假設(shè)我們正在構(gòu)建一個預(yù)測房價的模型,擁有房屋面積、房間數(shù)量、地理位置等原始數(shù)據(jù)。以下哪種特征工程方法可能有助于提高模型的性能?()A.對數(shù)值型特征進行標(biāo)準(zhǔn)化處理B.忽略地理位置特征,因為它難以量化C.直接使用原始數(shù)據(jù),不進行任何處理D.將所有特征組合成一個綜合特征9、假設(shè)我們正在分析一家公司的銷售數(shù)據(jù),發(fā)現(xiàn)某個月的銷售額異常高。在進一步分析時,首先應(yīng)該考慮的因素是?()A.促銷活動B.數(shù)據(jù)錄入錯誤C.市場需求突然增加D.競爭對手表現(xiàn)不佳10、數(shù)據(jù)分析中,數(shù)據(jù)安全是至關(guān)重要的問題。以下關(guān)于數(shù)據(jù)安全的說法中,錯誤的是?()A.數(shù)據(jù)安全包括數(shù)據(jù)的保密性、完整性和可用性等方面B.數(shù)據(jù)安全問題可能會導(dǎo)致數(shù)據(jù)泄露、篡改和丟失等嚴(yán)重后果C.采取加密、備份和訪問控制等措施可以提高數(shù)據(jù)的安全性D.數(shù)據(jù)安全只需要在數(shù)據(jù)存儲和傳輸過程中關(guān)注,在數(shù)據(jù)分析過程中無需考慮11、在處理大數(shù)據(jù)集時,分布式計算框架可以提高計算效率。假設(shè)要對海量的用戶行為數(shù)據(jù)進行分析,以下關(guān)于分布式計算框架選擇的描述,正確的是:()A.不考慮數(shù)據(jù)規(guī)模和計算需求,隨意選擇一個分布式框架B.選擇一個復(fù)雜但功能強大的分布式框架,不考慮團隊的技術(shù)能力和維護成本C.根據(jù)數(shù)據(jù)特點、計算任務(wù)和團隊技術(shù)水平,選擇合適的分布式計算框架,如Hadoop、Spark等,并進行合理的配置和優(yōu)化D.認為分布式計算框架可以解決所有性能問題,不關(guān)注數(shù)據(jù)的分區(qū)和并行處理策略12、假設(shè)我們有一組銷售數(shù)據(jù),要分析不同產(chǎn)品類別的銷售額在總銷售額中的占比情況,以下哪種圖表最能直觀地展示結(jié)果?()A.折線圖B.柱狀圖C.餅圖D.箱線圖13、在進行數(shù)據(jù)分析時,選擇合適的統(tǒng)計量可以幫助我們更好地理解數(shù)據(jù)。關(guān)于均值、中位數(shù)和眾數(shù),以下描述錯誤的是:()A.均值容易受到極端值的影響B(tài).中位數(shù)是將數(shù)據(jù)排序后位于中間位置的數(shù)值C.眾數(shù)是數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)值,一定唯一D.對于偏態(tài)分布的數(shù)據(jù),中位數(shù)可能比均值更能反映數(shù)據(jù)的中心位置14、在對一個社交網(wǎng)絡(luò)的用戶關(guān)系數(shù)據(jù)進行分析,例如好友關(guān)系、群組活動等,以發(fā)現(xiàn)社區(qū)結(jié)構(gòu)和關(guān)鍵節(jié)點。以下哪種算法可能在社區(qū)發(fā)現(xiàn)和關(guān)鍵人物識別中表現(xiàn)出色?()A.PageRank算法B.K-Means算法C.Apriori算法D.以上都不是15、在數(shù)據(jù)分析中,數(shù)據(jù)集成用于將多個數(shù)據(jù)源的數(shù)據(jù)合并在一起。假設(shè)要集成來自不同數(shù)據(jù)庫的銷售數(shù)據(jù)和客戶數(shù)據(jù),以下關(guān)于數(shù)據(jù)集成的描述,哪一項是不準(zhǔn)確的?()A.需要解決數(shù)據(jù)格式不一致、字段命名差異等問題B.可以使用ETL(Extract,Transform,Load)工具來實現(xiàn)數(shù)據(jù)的抽取、轉(zhuǎn)換和加載C.數(shù)據(jù)集成過程中可能會引入重復(fù)數(shù)據(jù)和數(shù)據(jù)沖突,需要進行處理D.數(shù)據(jù)集成可以隨意進行,不需要考慮數(shù)據(jù)的質(zhì)量和一致性16、對于數(shù)據(jù)分析中的數(shù)據(jù)融合,假設(shè)要整合來自多個數(shù)據(jù)源的數(shù)據(jù),這些數(shù)據(jù)源的數(shù)據(jù)格式、字段和含義可能不同。以下哪種數(shù)據(jù)融合方法可能更有助于實現(xiàn)數(shù)據(jù)的一致性和可用性?()A.基于規(guī)則的融合,制定明確的融合規(guī)則B.基于模型的融合,利用機器學(xué)習(xí)算法C.手動整合數(shù)據(jù),逐個處理D.不進行數(shù)據(jù)融合,分別分析各個數(shù)據(jù)源的數(shù)據(jù)17、在進行數(shù)據(jù)倉庫設(shè)計時,需要考慮數(shù)據(jù)的存儲和組織方式。假設(shè)一個企業(yè)有大量的銷售、庫存和客戶數(shù)據(jù),以下哪種數(shù)據(jù)模型可能最適合用于構(gòu)建數(shù)據(jù)倉庫?()A.星型模型B.雪花模型C.關(guān)系模型D.網(wǎng)狀模型18、在數(shù)據(jù)可視化中,選擇合適的圖表類型對于清晰傳達信息至關(guān)重要。假設(shè)要展示不同地區(qū)在過去十年間的人口增長趨勢,以下哪種圖表可能是最合適的?()A.餅圖B.雷達圖C.折線圖D.氣泡圖19、在數(shù)據(jù)分析的風(fēng)險評估中,假設(shè)要評估一個投資項目的風(fēng)險水平。以下哪種方法可能更全面地考慮各種不確定性和潛在損失?()A.敏感性分析,研究參數(shù)變化的影響B(tài).蒙特卡羅模擬,隨機生成多種可能結(jié)果C.風(fēng)險矩陣,評估風(fēng)險的可能性和影響程度D.不進行風(fēng)險評估,盲目投資20、數(shù)據(jù)分析中,數(shù)據(jù)挖掘算法的性能可以通過多種指標(biāo)進行評估。以下關(guān)于數(shù)據(jù)挖掘算法性能評估指標(biāo)的說法中,錯誤的是?()A.數(shù)據(jù)挖掘算法的性能可以通過準(zhǔn)確率、召回率、F1值等指標(biāo)進行評估B.數(shù)據(jù)挖掘算法的性能評估指標(biāo)應(yīng)根據(jù)具體的問題和數(shù)據(jù)特點來選擇C.數(shù)據(jù)挖掘算法的性能評估指標(biāo)只需要考慮算法的準(zhǔn)確性,其他因素可以忽略不計D.數(shù)據(jù)挖掘算法的性能評估應(yīng)在不同的數(shù)據(jù)集上進行測試,以確保結(jié)果的可靠性21、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)我們有一個包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯誤數(shù)據(jù)和重復(fù)記錄。以下關(guān)于數(shù)據(jù)清洗方法的描述,正確的是:()A.直接刪除包含缺失值的記錄,以快速簡化數(shù)據(jù)集B.對于錯誤數(shù)據(jù),可以根據(jù)其他相關(guān)字段的值進行推測和修正C.忽略重復(fù)記錄,因為它們對數(shù)據(jù)分析結(jié)果影響不大D.不進行任何數(shù)據(jù)清洗操作,直接使用原始數(shù)據(jù)進行分析22、在數(shù)據(jù)分析中,假設(shè)檢驗是一種常用的統(tǒng)計方法。假設(shè)要檢驗一種新的教學(xué)方法是否能顯著提高學(xué)生的成績,以下關(guān)于假設(shè)檢驗的描述,哪一項是不準(zhǔn)確的?()A.首先需要提出原假設(shè)和備擇假設(shè),然后根據(jù)樣本數(shù)據(jù)計算檢驗統(tǒng)計量B.如果p值小于預(yù)先設(shè)定的顯著性水平,就拒絕原假設(shè),認為新教學(xué)方法有效C.假設(shè)檢驗的結(jié)果完全取決于樣本數(shù)據(jù)的大小和分布,與研究問題的實際情況無關(guān)D.可以通過控制樣本量和顯著性水平來平衡檢驗的靈敏度和特異性23、對于數(shù)據(jù)分析中的因果推斷,假設(shè)要確定一個因素是否真正導(dǎo)致了某種結(jié)果。以下哪種方法或思路在進行因果分析時可能是關(guān)鍵的?()A.隨機對照試驗B.觀察性研究結(jié)合工具變量C.反事實推理D.僅根據(jù)相關(guān)性得出因果結(jié)論24、在進行數(shù)據(jù)分析項目時,需要制定合理的項目計劃和流程。假設(shè)要在三個月內(nèi)完成一個大型企業(yè)的銷售數(shù)據(jù)分析項目,包括數(shù)據(jù)收集、清洗、分析和報告撰寫。以下哪種項目管理方法在確保按時交付高質(zhì)量結(jié)果方面更具指導(dǎo)意義?()A.瀑布模型B.敏捷開發(fā)C.螺旋模型D.以上方法效果相同25、在數(shù)據(jù)分析中,探索性數(shù)據(jù)分析(EDA)可以幫助我們初步了解數(shù)據(jù)的特征。假設(shè)你剛剛獲得一個新的數(shù)據(jù)集,以下關(guān)于EDA的步驟,哪一項是最應(yīng)該首先進行的?()A.繪制數(shù)據(jù)的直方圖和箱線圖B.計算數(shù)據(jù)的基本統(tǒng)計量,如均值、中位數(shù)等C.檢查數(shù)據(jù)的缺失值和異常值D.對數(shù)據(jù)進行聚類分析二、簡答題(本大題共4個小題,共20分)1、(本題5分)簡述數(shù)據(jù)隱私保護在數(shù)據(jù)分析中的重要性,介紹常見的數(shù)據(jù)隱私保護技術(shù)和方法,如加密、匿名化等。2、(本題5分)在進行數(shù)據(jù)分析時,如何處理數(shù)據(jù)中的多源異構(gòu)性?闡述數(shù)據(jù)融合和轉(zhuǎn)換的方法,并舉例說明。3、(本題5分)解釋什么是量子計算在數(shù)據(jù)分析中的潛在應(yīng)用,說明其優(yōu)勢和面臨的挑戰(zhàn),并舉例分析。4、(本題5分)在數(shù)據(jù)挖掘中,如何處理噪聲數(shù)據(jù)?請介紹噪聲數(shù)據(jù)的處理方法和技術(shù),如濾波、平滑等,并舉例說明。三、案例分析題(本大題共5個小題,共25分)1、(本題5分)一家物流公司的跨境電商物流業(yè)務(wù)記錄了運輸數(shù)據(jù),包括商品類別、運輸國家、運輸方式、清關(guān)時效、物流成本等。研究不同商品類別和運輸國家對運輸方式選擇和清關(guān)時效的影響。2、(本題5分)某游戲公司記錄了玩家的游戲行為、充值記錄、在線時長等數(shù)據(jù)。探討如何利用這些數(shù)據(jù)提高游戲的用戶留存率和盈利能力。3、(本題5分)某在線健身課程平臺擁有課程銷售數(shù)據(jù)、用戶鍛煉目標(biāo)、課程完成率等。設(shè)計更有效的健身課程和激勵機制。4、(本題5分)某在線教育平臺收集了不同年齡段學(xué)生的學(xué)習(xí)行為數(shù)據(jù)、學(xué)習(xí)效果評估等。研究如何根據(jù)這些數(shù)據(jù)開發(fā)適合不同年齡段的課程和教學(xué)方法。5、(本題5分)一家快遞公司積累了包裹的收發(fā)地、重量、運輸方式等數(shù)據(jù)。分析運輸網(wǎng)絡(luò)的優(yōu)化空間,提高快遞服務(wù)的速度和質(zhì)量。四、論述題(本大題共3個小題,共30分)1、(本題10分)電信行業(yè)擁有大量的用戶通信數(shù)據(jù)和網(wǎng)絡(luò)性能數(shù)據(jù)。分析如何運用數(shù)據(jù)分析優(yōu)化網(wǎng)絡(luò)覆蓋、提升服務(wù)質(zhì)量、進行客戶細分和

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論