




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
遼寧省遼河油田二中2025屆高三最后一模數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,是非零向量,若對于任意的,都有成立,則A. B. C. D.2.已知的內角的對邊分別是且,若為最大邊,則的取值范圍是()A. B. C. D.3.已知函數若關于的方程有六個不相等的實數根,則實數的取值范圍為()A. B. C. D.4.已知復數為虛數單位),則z的虛部為()A.2 B. C.4 D.5.拋物線的準線方程是,則實數()A. B. C. D.6.雙曲線的漸近線方程是()A. B. C. D.7.已知集合,,則()A. B. C. D.8.已知復數,其中,,是虛數單位,則()A. B. C. D.9.若單位向量,夾角為,,且,則實數()A.-1 B.2 C.0或-1 D.2或-110.設是兩條不同的直線,是兩個不同的平面,下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則11.已知正三棱錐的所有頂點都在球的球面上,其底面邊長為4,、、分別為側棱,,的中點.若在三棱錐內,且三棱錐的體積是三棱錐體積的4倍,則此外接球的體積與三棱錐體積的比值為()A. B. C. D.12.方程在區間內的所有解之和等于()A.4 B.6 C.8 D.10二、填空題:本題共4小題,每小題5分,共20分。13.設等差數列的前項和為,若,,則數列的公差________,通項公式________.14.已知曲線,點,在曲線上,且以為直徑的圓的方程是.則_______.15.設α、β為互不重合的平面,m,n是互不重合的直線,給出下列四個命題:①若m∥n,則m∥α;②若m?α,n?α,m∥β,n∥β,則α∥β;③若α∥β,m?α,n?β,則m∥n;④若α⊥β,α∩β=m,n?α,m⊥n,則n⊥β;其中正確命題的序號為_____.16.復數(其中i為虛數單位)的共軛復數為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(Ⅰ)若是第二象限角,且,求的值;(Ⅱ)求函數的定義域和值域.18.(12分)在直角坐標系中,曲線的參數方程為以為極點,軸正半軸為極軸建立極坐標系,設點在曲線上,點在曲線上,且為正三角形.(1)求點,的極坐標;(2)若點為曲線上的動點,為線段的中點,求的最大值.19.(12分)如圖,在中,點在上,,,.(1)求的值;(2)若,求的長.20.(12分)在直角坐標系中,曲線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)把的參數方程化為極坐標方程:(2)求與交點的極坐標.21.(12分)在直角坐標系中,直線的參數方程為.(為參數).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求的普通方程及的直角坐標方程;(2)求曲線上的點到距離的取值范圍.22.(10分)已知函數,其中為自然對數的底數,.(1)若曲線在點處的切線與直線平行,求的值;(2)若,問函數有無極值點?若有,請求出極值點的個數;若沒有,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
畫出,,根據向量的加減法,分別畫出的幾種情況,由數形結合可得結果.【詳解】由題意,得向量是所有向量中模長最小的向量,如圖,當,即時,最小,滿足,對于任意的,所以本題答案為D.【點睛】本題主要考查了空間向量的加減法,以及點到直線的距離最短問題,解題的關鍵在于用有向線段正確表示向量,屬于基礎題.2、C【解析】
由,化簡得到的值,根據余弦定理和基本不等式,即可求解.【詳解】由,可得,可得,通分得,整理得,所以,因為為三角形的最大角,所以,又由余弦定理,當且僅當時,等號成立,所以,即,又由,所以的取值范圍是.故選:C.【點睛】本題主要考查了代數式的化簡,余弦定理,以及基本不等式的綜合應用,試題難度較大,屬于中檔試題,著重考查了推理與運算能力.3、B【解析】
令,則,由圖象分析可知在上有兩個不同的根,再利用一元二次方程根的分布即可解決.【詳解】令,則,如圖與頂多只有3個不同交點,要使關于的方程有六個不相等的實數根,則有兩個不同的根,設由根的分布可知,,解得.故選:B.【點睛】本題考查復合方程根的個數問題,涉及到一元二次方程根的分布,考查學生轉化與化歸和數形結合的思想,是一道中檔題.4、A【解析】
對復數進行乘法運算,并計算得到,從而得到虛部為2.【詳解】因為,所以z的虛部為2.【點睛】本題考查復數的四則運算及虛部的概念,計算過程要注意.5、C【解析】
根據準線的方程寫出拋物線的標準方程,再對照系數求解即可.【詳解】因為準線方程為,所以拋物線方程為,所以,即.故選:C【點睛】本題考查拋物線與準線的方程.屬于基礎題.6、C【解析】
根據雙曲線的標準方程即可得出該雙曲線的漸近線方程.【詳解】由題意可知,雙曲線的漸近線方程是.故選:C.【點睛】本題考查雙曲線的漸近線方程的求法,是基礎題,解題時要認真審題,注意雙曲線的簡單性質的合理運用.7、D【解析】
先求出集合B,再與集合A求交集即可.【詳解】由已知,,故,所以.故選:D.【點睛】本題考查集合的交集運算,考查學生的基本運算能力,是一道容易題.8、D【解析】試題分析:由,得,則,故選D.考點:1、復數的運算;2、復數的模.9、D【解析】
利用向量模的運算列方程,結合向量數量積的運算,求得實數的值.【詳解】由于,所以,即,,即,解得或.故選:D【點睛】本小題主要考查向量模的運算,考查向量數量積的運算,屬于基礎題.10、C【解析】
在A中,與相交或平行;在B中,或;在C中,由線面垂直的判定定理得;在D中,與平行或.【詳解】設是兩條不同的直線,是兩個不同的平面,則:在A中,若,,則與相交或平行,故A錯誤;在B中,若,,則或,故B錯誤;在C中,若,,則由線面垂直的判定定理得,故C正確;在D中,若,,則與平行或,故D錯誤.故選C.【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,是中檔題.11、D【解析】
如圖,平面截球所得截面的圖形為圓面,計算,由勾股定理解得,此外接球的體積為,三棱錐體積為,得到答案.【詳解】如圖,平面截球所得截面的圖形為圓面.正三棱錐中,過作底面的垂線,垂足為,與平面交點記為,連接、.依題意,所以,設球的半徑為,在中,,,,由勾股定理:,解得,此外接球的體積為,由于平面平面,所以平面,球心到平面的距離為,則,所以三棱錐體積為,所以此外接球的體積與三棱錐體積比值為.故選:D.【點睛】本題考查了三棱錐的外接球問題,三棱錐體積,球體積,意在考查學生的計算能力和空間想象能力.12、C【解析】
畫出函數和的圖像,和均關于點中心對稱,計算得到答案.【詳解】,驗證知不成立,故,畫出函數和的圖像,易知:和均關于點中心對稱,圖像共有8個交點,故所有解之和等于.故選:.【點睛】本題考查了方程解的問題,意在考查學生的計算能力和應用能力,確定函數關于點中心對稱是解題的關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
直接利用等差數列公式計算得到答案.【詳解】,,解得,,故.故答案為:2;.【點睛】本題考查了等差數列的基本計算,意在考查學生的計算能力.14、【解析】
設所在直線方程為設?點坐標分別為,,都在上,代入曲線方程,兩式作差可得,從而可得直線的斜率,聯立直線與的方程,由,利用弦長公式即可求解.【詳解】因為是圓的直徑,必過圓心點,設所在直線方程為設?點坐標分別為,,都在上,故兩式相減,可得(因為是的中點),即聯立直線與的方程:又,即,即又因為,則有即∴.故答案為:【點睛】本題考查了直線與圓錐曲線的位置關系、弦長公式,考查了學生的計算能力,綜合性比較強,屬于中檔題.15、④【解析】
根據直線和平面,平面和平面的位置關系依次判斷每個選項得到答案.【詳解】對于①,當m∥n時,由直線與平面平行的定義和判定定理,不能得出m∥α,①錯誤;對于②,當m?α,n?α,且m∥β,n∥β時,由兩平面平行的判定定理,不能得出α∥β,②錯誤;對于③,當α∥β,且m?α,n?β時,由兩平面平行的性質定理,不能得出m∥n,③錯誤;對于④,當α⊥β,且α∩β=m,n?α,m⊥n時,由兩平面垂直的性質定理,能夠得出n⊥β,④正確;綜上知,正確命題的序號是④.故答案為:④.【點睛】本題考查了直線和平面,平面和平面的位置關系,意在考查學生的空間想象能力和推斷能力.16、【解析】
利用復數的乘法運算求出,再利用共軛復數的概念即可求解.【詳解】由,則.故答案為:【點睛】本題考查了復數的四則運算以及共軛復數的概念,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)函數的定義域為,值域為【解析】
(1)由為第二象限角及的值,利用同角三角函數間的基本關系求出及的值,再代入中即可得到結果.(2)函數解析式利用二倍角和輔助角公式將化為一個角的正弦函數,根據的范圍,即可得到函數值域.【詳解】解:(1)因為是第二象限角,且,所以.所以,所以.(2)函數的定義域為.化簡,得,因為,且,,所以,所以.所以函數的值域為.(注:或許有人會認為“因為,所以”,其實不然,因為.)【點睛】本題考查同角三角函數的基本關系式,三角函數函數值求解以及定義域和值域的求解問題,涉及到利用二倍角公式和輔助角公式整理三角函數關系式的問題,意在考查學生的轉化能力和計算求解能力,屬于常考題型.18、(1),;(2).【解析】
(1)利用極坐標和直角坐標的互化公式,即得解;(2)設點的直角坐標為,則點的直角坐標為.將此代入曲線的方程,可得點在以為圓心,為半徑的圓上,所以的最大值為,即得解.【詳解】(1)因為點在曲線上,為正三角形,所以點在曲線上.又因為點在曲線上,所以點的極坐標是,從而,點的極坐標是.(2)由(1)可知,點的直角坐標為,B的直角坐標為設點的直角坐標為,則點的直角坐標為.將此代入曲線的方程,有即點在以為圓心,為半徑的圓上.,所以的最大值為.【點睛】本題考查了極坐標和參數方程綜合,考查了極坐標和直角坐標互化,參數方程的應用,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.19、(1);(2).【解析】
(1)由兩角差的正弦公式計算;(2)由正弦定理求得,再由余弦定理求得.【詳解】(1)因為,所以.因為,所以,所以.(2)在中,由,得,在中,由余弦定理可得,所以.【點睛】本題考查兩角差的正弦公式,考查正弦定理和余弦定理,屬于中檔題.20、(1)(2)與交點的極坐標為,和【解析】
(1)先把曲線化成直角坐標方程,再化簡成極坐標方程;(2)聯立曲線和曲線的方程解得即可.【詳解】(1)曲線的直角坐標方程為:,即.的參數方程化為極坐標方程為;(2)聯立可得:,與交點的極坐標為,和.【點睛】本題考查了參數方程,直角坐標方程,極坐標方程的互化,也考查了極坐標方程的聯立,屬于基礎題.21、(1),.(2)【解析】
(1)根據直線的參數方程為(為參數),消去參數,即可求得的的普通方程,曲線的極坐標方程為,利用極坐標化直角坐標的公式:,即可求得答案;(2)的標準方程為,圓心為,半徑為,根據點到直線距離公式,即可求得答案.【詳解】(1)直線的參數方程為(為參數),消去參數的普通方程為.曲線的極坐標方程為,利用極坐標化直角坐標的公式:的直角坐標方程為.(2)的標準方程為,圓心為,半徑為圓心到的距離為,點到的距離的取值范圍是.【點睛】本題解題關鍵是掌握極坐標化直角坐標的公
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 浙江省稽陽聯誼學校2025年4月高三聯考數學試卷(含答案)
- 《人生的意義在于奉獻》課件
- 《演講的藝術》課件
- 受彎構件的其他構造要求鋼筋混凝土結構課件
- 短期合同續簽建議
- 鐵路班組管理S班組凝聚力訓練課件
- 討論照明電路能否采用三相三線制供電方式不加零線會不會出現問
- 網格橋架安裝施工方案
- 鐵路客運站車無線交互系統客運管理部分課件
- 大學生職業規劃大賽《視覺傳達設計專業》生涯發展展示
- 光伏工程施工安全方案
- 聲樂課課件教學
- 保密法實施條例培訓
- 泰山產業領軍人才申報書
- GB/T 44395-2024激光雷達測風數據可靠性評價技術規范
- 2024年四川成都市成華區“蓉漂人才薈”事業單位招聘高層次人才歷年高頻500題難、易錯點模擬試題附帶答案詳解
- 2024年浙江省金華市東陽市橫店鎮三校中考二模道德與法治試題(原卷版)
- 杭州市上城區政務服務中心招聘筆試真題2022
- 中華聯合保險集團股份有限公司行測筆試題庫2024
- 幼兒園中班社會活動《城市美容師》課件
- 地球的形狀與內部結構30張省公開課一等獎新名師比賽一等獎課件
評論
0/150
提交評論