




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第第頁蘇科版數學八年級下冊第三次月考試題一、單選題(每小題3分,共30分)1.下列汽車標志的圖形是中心對稱圖形的是A.B.C.D.2.下列式子中,屬于最簡二次根式的是A. B. C. D.3.下列調查中,適合采用抽樣調查的是()A.對乘坐高鐵的乘客進行安檢B.調查本班學裝的身高C.為保證某種新研發的戰斗機試飛成功,對其零部件進行檢查D.調查一批英雄牌鋼筆的使用壽命4.關于特殊四邊形對角線的性質,矩形具備而平行四邊形不一定具備的是()A.對角線互相平分 B.對角線互相垂直C.對角線相等 D.對角線平分一組對角5.如果把分式中的和都同時擴大2倍,那么分式的值()A.不變 B.擴大4倍 C.縮小2倍 D.擴大2倍6.一只不透明的袋子中裝有4個黑球、2個白球,每個球除顏色外都相同,從中任意摸出3個球,下列事件為必然事件的是()A.至少有1個球是黑球B.至少有1個球是白球C.至少有2個球是黑球D.至少有2個球是白球7.如圖,在矩形ABCD中,P、Q分別是BC、DC上的點,E、F分別是AP、PQ的中點.BC=12,DQ=5,在點P從B移動到C(點Q不動)的過程中,則下列結論正確的是()A.線段EF的長逐漸增大,最大值是13 B.線段EF的長逐漸減小,最小值是6.5C.線段EF的長始終是6.5 D.線段EF的長先增大再減小,且6.5≤EF≤138.小明和小張兩人練習電腦打字,小明每分鐘比小張少打10個字,小明打200個字所用的時間和小張打250個字所用的時間相等.設小明打字速度為x個/分鐘,則列方程正確的是()A. B. C. D.9.如圖所示,四邊形ABCD是平行四邊形,按下列條件得到的四邊形BFDE是平行四邊形的個數是()①圖甲,DE⊥AC,BF⊥AC②圖乙,DE平分∠ADC,BF平分∠ABC③圖丙,E是AB的中點,F是CD的中點④圖丁,E是AB上一點,EF⊥AB.A.1個 B.2個 C.3個 D.4個10.如圖,已知∠MON=30°,B為OM上一點,BA⊥ON于點A,四邊形ABCD為正方形,P為射線BM上一動點,連結CP,將CP繞點C順時針方向旋轉90°得CE,連接BE,若AB=2,則BE的最小值為()+1 B.2﹣1 C.3 D.4﹣二、填空題11.如果二次根式有意義,那么x的取值范圍是_____.12.當x=______時,分式的值為0.13.某種油菜籽在相同條件下發芽試驗的結果如下:每批粒數100400800100020004000發芽的頻數8530065279316043204發芽的頻率0.8500.7500.8150.7930.8020.801根據以上數據可以估計,該玉米種子發芽的概率為_____(精確到0.1).14.若最簡二次根式與是同類二次根式,則a的值為________.15.如圖,在平行四邊形ABCD中,AB=3,BC=5,∠B的平分線BE交AD于點E,則DE的長為____________.16.若關于若關于x的分式方程的解為正數,那么字母a的取值范圍是___.17.如圖,O是坐標原點,菱形OABC的頂點A的坐標為,頂點C在x軸的正半軸上,則的角平分線所在直線的函數關系式為______.18.如圖,在平面直角坐標系中,正方形ABCD頂點A的坐標為(0,4),B點在x軸上,對角線AC,BD交于點M,OM=6,則點C的坐標為_____.計算(1)+(π+)0+|﹣2|(2)解方程(1)(2)21.先化簡,再求值:,其中x=+122.每到春夏交替時節,雌性楊樹會以滿天飛絮的方式來傳播下一代,漫天飛舞的楊絮易引發皮膚病、呼吸道疾病等,給人們造成困擾,為了解市民對治理楊絮方法的贊同情況,某課題小組隨機調查了部分市民(問卷調查表如表所示),并根據調查結果繪制了如下尚不完整的統計圖.治理楊絮一一您選哪一項?(單選)A.減少楊樹新增面積,控制楊樹每年的栽種量B.調整樹種結構,逐漸更換現有楊樹C.選育無絮楊品種,并推廣種植D.對雌性楊樹注射生物干擾素,避免產生飛絮E.其他根據以上統計圖,解答下列問題:(1)本次接受調查的市民共有人;(2)扇形統計圖中,扇形E的圓心角度數是;(3)請補全條形統計圖;(4)若該市約有90萬人,請估計贊同“選育無絮楊品種,并推廣種植”的人數.23.如圖,已知△ABC的三個頂點的坐標分別為A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)畫出△ABC關于原點成中心對稱的三角形△A′B′C′;(2)將△ABC繞坐標原點O逆時針旋轉90°,畫出圖形,直接寫出點B的對應點B″的坐標;(3)請直接寫出:以A、B、C為頂點的平行四邊形的第四個頂點D的坐標.24.如圖,矩形ABCD的對角線交于點O,點E是矩形外一點,CE∥BD,BE∥AC,∠ABD=30o,連接AE交BD于點F、連接CF.求證:四邊形BECO是菱形;填空:若AC=8,則線段CF的長為______.25.某校為美化校園,計劃對面積為1800m2的區域進行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為400m2區域的綠化時,甲隊比乙隊少用4天.(1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2?(2)若學校每天需付給甲隊的綠化費用是0.4萬元,乙隊為0.25萬元,要使這次的綠化總費用不超過8萬元,至少應安排甲隊工作多少天?26.在數學興趣小組活動中,小明進行數學探究活動,將邊長為2的正方形ABCD與邊長為2的正方形AEFG按圖1位置放置,AD與AE在同一直線上,AB與AG在同一直線上.連接DG,BE,易得DG=BE且DG⊥BE(不需要說明理由)(1)如圖2,小明將正方形ABCD繞點A逆時針旋轉,旋轉角為(30?﹤﹤180?)①連接DG,BE,求證:DG=BE且DG⊥BE;②在旋轉過程中,如圖3,連接BG,GE,ED,DB,求出四邊形BGED面積的最大值.(2)如圖4,分別取BG,GE,ED,DB的中點M,N,P,Q,連接MN,NP,PQ,QM,則四邊形MNPQ的形狀為,四邊形MNPQ面積的最大值是,參考答案1.C【解析】【分析】根據中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】A、不是中心對稱圖形,故本選項不符合題意;B、不是中心對稱圖形,故本選項不符合題意;C、是中心對稱圖形,故本選項符合題意;D、不是中心對稱圖形,故本選項不符合題意.故選C.【點睛】本題考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.2.B【解析】【詳解】判定一個二次根式是不是最簡二次根式的方法,就是逐個檢查最簡二次根式的兩個條件(1)被開方數的因數是整數,因式是整式;(2)被開方數中不含能開得盡方的因數或因式是否同時滿足,同時滿足的就是最簡二次根式,否則就不是.∵,∴屬于最簡二次根式.故選B.3.D【解析】【分析】對于精確度要求高的調查,事關重大的調查往往選用普查.適合普查的方式一般有以下幾種:①范圍較??;②容易掌控;③不具有破壞性;④可操作性較強.【詳解】A、對乘坐高鐵的乘客進行安檢,必須普查;B、調意本班學生的身高,必須普查;C、為保證某種新研發的戰斗機試飛成功,對其零部件進行檢查,必須普查;D、調查一批英雄牌鋼筆的使用壽命,適合抽樣調查,故選D.【點睛】本題考查的是普查和抽樣調查的選擇調查方式的選擇需要將普查的局限性和抽樣調查的必要性結合起來,具體問題具體分析,普查結果準確,所以在要求精確、難度相對不大,實驗無破壞性的情況下應選擇普查方式,當考查的對象很多或考查會給被調查對象帶來損傷破壞,以及考查經費和時間都非常有限時,普查就受到限制,這時就應選擇抽樣調查.4.C【解析】【分析】由矩形的對角線性質和平行四邊形的對角線性質即可得出結論.【詳解】解:矩形的對角線互相平分且相等,平行四邊形的對角線互相平分,但不一定相等,∴矩形具備而平行四邊形不一定具備的是對角線相等.故選C.【點睛】本題考查了矩形的性質、平行四邊形的性質;熟記矩形和平行四邊形的性質是解題的關鍵.5.D【解析】分析:根據題意把原分式中的分別換成代入原式,化簡后再和原分式對比即可得到結論.詳解:把原分式中的分別換成可得:,∴當把分式中的都擴大2倍后,分式的值也擴大2倍.故選D.點睛:本題考查的是“分式的基本性質的應用”,熟記分式的“基本性質”并能用“分式的基本性質”進行分式的化簡是解答本題的關鍵.6.A【解析】試題分析:一只不透明的袋子中裝有4個黑球、2個白球,每個球除顏色外都相同,從中任意摸出3個球,至少有1個球是黑球是必然事件;至少有1個球是白球、至少有2個球是黑球和至少有2個球是白球都是隨機事件.故選A.考點:隨機事件.7.C【解析】連接AQ,∵四邊形ABCD是矩形,∴AD=BC=12,∠D=90°,∴AQ==13,∵E、F分別是AP、PQ的中點,∴EF是△PAQ的中位線,∴EF=AQ=6.5,即線段EF的長始終是6.5,故選C.8.C【解析】分析:根據題中的等量關系:小明打200個字所用時間=小張打250個字所用時間結合題中的已知條件進行判斷即可.詳解:設小明的打字速度為x個/分鐘,根據題意可得:.故選C.點睛:讀懂題意,把小明打200個字所用時間和小張打250個字所用時間表達出來,結合所給等量關系:小明打200個字所用時間=小張打250個字所用時間,即可列出正確的方程.9.C【解析】【分析】①由DE⊥AC,BF⊥AC,可得DE∥BF,又由四邊形ABCD是平行四邊形,利用△ACD與△ACB的面積相等,即可判定DE=BF,然后由一組對邊平行且相等的四邊形是平行四邊形,證得四邊形BFDE是平行四邊形;
②由四邊形ABCD是平行四邊形,DE平分∠ADC,BF平分∠ABC,易證得△ADE≌△CBF,則可判定DE∥BF,DE=BF,繼而證得四邊形BFDE是平行四邊形;
③由四邊形ABCD是平行四邊形,E是AB的中點,F是CD的中點,易證得DF∥BE,DF=BE,繼而證得四邊形BFDE是平行四邊形;
④無法確定DF=BE,只能證得DF∥BE,故不能判定四邊形BFDE是平行四邊形.【詳解】①∵四邊形ABCD是平行四邊形,∴∵DE⊥AC,BF⊥AC,∴DE∥BF,∴DE=BF,∴四邊形BFDE是平行四邊形;②∵四邊形ABCD是平行四邊形,∴∠ADC=∠ABC,AD=CB,AD∥BC,∴∠DAE=∠BCF,∵DE平分∠ADC,BF平分∠ABC,∴∠ADE=∠CBF,在△ADE和△CBF中,∴△ADE≌△CBF(ASA),∴DE=BF,∠AED=∠BFC,∴∠DEF=∠BFE,∴DE∥BF,∴四邊形BFDE是平行四邊形;③證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,∵E是AB的中點,F是CD的中點,∴∴DF=BE,∴四邊形BFDE是平行四邊形;④∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,∵E是AB上一點,EF⊥AB,無法判定DF=BE,∴四邊形BFDE不一定是平行四邊形。故選:C.【點睛】考查了平行四邊形的判定與性質,掌握平行四邊形的判定定理是解題的關鍵.10.A【解析】【分析】連接PD,依據SAS構造全等三角形,即△BCE≌△DCP,將BE的長轉化為PD的長,再依據垂線段最短得到當DP最短時,BE亦最短,根據∠O=30°,OD=2+2,即可求得DP的長的最小值.【詳解】解:如圖,連接PD,由題意可得,PC=EC,∠PCE=90°=∠DCB,BC=DC,∴∠DCP=∠BCE,在△DCP和△BCE中,,∴△DCP≌△BCE(SAS),∴PD=BE,當DP⊥OM時,DP最短,此時BE最短,∵∠AOB=30°,AB=2=AD,∴OD=OA+AD=2+2,∴當DP⊥OM時,DP=OD=+1,∴BE的最小值為+1.故選A.【點睛】本題考查旋轉的性質,正方形的性質,勾股定理,全等三角形的判定與性質以及垂線段最短的綜合應用,解題的關鍵是作輔助線構造全等三角形,根據全等三角形的對應邊相等以及垂線段最短進行判斷.11.【解析】【分析】直接利用二次根式有意義的條件得出答案.【詳解】∵二次根式有意義,∴3x+10,解得:故答案為:【點睛】考查二次根式有意義的條件,被開方數大于等于0.12.-2【解析】分析:當分式的分子為零,分母不為零時,則分式的值為零.詳解:根據題意得:x+2=0,解得:x=-2.點睛:本題主要考查的就是分式的值,屬于基礎題型.當分式的分子為零,分母不為零時,分式的值為零;當分式的分母為零時,則分式無意義.13.0.8.【解析】【分析】仔細觀察表格,發現大量重復試驗發芽的頻率逐漸穩定在0.8左右,從而得到結論.【詳解】∵觀察表格,發現大量重復試驗發芽的頻率逐漸穩定在0.8左右,∴該玉米種子發芽的概率為0.8,故答案為0.8.【點睛】本題考查了利用頻率估計概率:大量重復實驗時,事件發生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數的增多,值越來越精確.14.4【解析】【分析】根據最簡二次根式及同類二次根式的定義列方程求解.【詳解】∵最簡二次根式與是同類二次根式,∴2a?3=5,解得:a=4.故答案為4.【點睛】考查最簡二次根式與同類二次根式的概念,化為最簡后被開方數相同的根式稱為同類二次根式,15.2【解析】【分析】根據平行四邊形的性質,可得出AD∥BC,則∠AEB=∠CBE,再由∠ABE=∠CBE,則∠AEB=∠ABE,則AE=AB,從而求出DE.【詳解】解:∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠AEB=∠CBE,
∵∠B的平分線BE交AD于點E,
∴∠ABE=∠CBE,
∴∠AEB=∠ABE,
∴AE=AB,
∵AB=3,BC=5,
∴DE=AD-AE=BC-AB=5-3=2.
故答案為2.【點睛】本題考查了平行四邊形的性質、角平分線的定義,解題的關鍵是掌握平行四邊形的性質:對邊相等.16.a>1且a≠2【解析】【詳解】分式方程去分母得:2x﹣a=x﹣1,解得:x=a﹣1,根據題意得:a﹣1>0,解得:a>1.又當x=1時,分式方程無意義,∴把x=1代入x=a﹣1得a=2.∴要使分式方程有意義,a≠2.∴a的取值范圍是a>1且a≠2.17.【解析】【分析】延長BA交y軸于D,則BD⊥y軸,依據點A的坐標為(3,4),即可得出B(8,4),再根據∠AOC的角平分線所在直線經過點B,即可得到函數關系式.【詳解】如圖所示,延長BA交y軸于D,則BD⊥y軸.∵點A的坐標為(3,4),∴AD=3,OD=4,∴AO=AB=5,∴BD=3+5=8,∴B(8,4).設∠AOC的角平分線所在直線的函數關系式為y=kx.∵菱形OABC中,∠AOC的角平分線所在直線經過點B,∴4=8k,即k,∴∠AOC的角平分線所在直線的函數關系式為yx.故答案為:yx.【點睛】本題考查了一次函數圖象上點的坐標特征以及菱形的性質的運用,正確得出B點坐標是解題的關鍵.18.(12,8)【解析】【分析】過點C作CE⊥x軸于點E,過點M作MF⊥x軸于點F,連結EM,根據正方形的性質可以得出F是OE的中點,就可以得出MF是梯形AOEC的中位線,證明△AOB≌△BEC就可以得出OB=CE,AO=BE,就可以求得△OME是等腰直角三角形,由勾股定理就可以求出OE的值,從而得出C點的縱坐標.【詳解】過點C作CE⊥x軸于點E,過點M作MF⊥x軸于點F,連結EM,∴∠MFO=∠CEO=∠AOB=90°,AO∥MF∥CE,∵四邊形ABCD是正方形,∴AB=BC,∠ABC=90,AM=CM,∴∠OAB=∠EBC,OF=EF,∴MF是梯形AOEC的中位線,∴MF=(AO+EC),∵MF⊥OE,∴MO=ME.∵在△AOB和△BEC中,∴△AOB≌△BEC(AAS),∴OB=CE,AO=BE.∴MF=(BE+OB),又∵OF=FE,∴△MOE是直角三角形,∵MO=ME,∴△MOE是等腰直角三角形,∴∴A(0,4),∴OA=4,∴BE=4,∴OB=CE=8∴C(12,8).故答案為(12,8).【點睛】考查正方形的性質,坐標與圖形性質,全等三角形的判定與性質,梯形中位線定理,掌握全等三角形的判定與性質是解題的關鍵.19.(1)3;(2).【解析】【分析】(1)根據零指數冪、絕對值的意義和分母有理化得到原式然后合并即可.(2)先將分母通分,根據同分母分式的減法進行運算即可.【詳解】(1)原式=3(2)原式【點睛】考查實數的混合運算以及分式的減法,熟練掌握運算法則是解題的關鍵.20.(1)x=-6;(2)原方程無解.【解析】【分析】找出最簡公分母是,方程兩邊乘最簡公分母,可以把分式方程轉化為整式方程求解.【詳解】(1)去分母得,3(x-2)=4x,解得:x=﹣6,經檢驗x=﹣6是原方程的解;(2)最簡公分母為3(3x﹣1),原方程可化為6x﹣2+3x=1,即9x=3,解得:x=,經檢驗:x=是原方程的增根,故原方程無解.【點睛】考查分式方程的解法,熟練掌握分式方程的解題步驟是解題的關鍵.注意檢驗.21.【解析】試題分析:根據分式的混合運算,先對分式的分子分母因式分解,然后通分后把除法化為乘法,約分后代入計算即可.試題解析:=÷==當x=+1時,原式===.22.(1)2000;(2)28.8°;(3)補圖見解析;(4)36萬人.【解析】分析:(1)將A選項人數除以總人數即可得;(2)用360°乘以E選項人數所占比例可得;(3)用總人數乘以D選項人數所占百分比求得其人數,據此補全圖形即可得;(4)用總人數乘以樣本中C選項人數所占百分比可得.詳解:(1)本次接受調查的市民人數為300÷15%=2000人,(2)扇形統計圖中,扇形E的圓心角度數是360°×=28.8°,(3)D選項的人數為2000×25%=500,補全條形圖如下:(4)估計贊同“選育無絮楊品種,并推廣種植”的人數為90×40%=36(萬人).點睛:本題考查的是條形統計圖和扇形統計圖的綜合運用.讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖直接反映部分占總體的百分比大?。?3.(1)圖略;(2)圖略,點B″的坐標為(0,﹣6);(3)點D坐標為(﹣7,3)或(3,3)或(﹣5,﹣3).【解析】【分析】(1)根據網格結構找出點A、B、C關于原點對稱的點A′、B′、C′的位置,然后順次連接即可;
(2)根據網格結構找出點A、B、C繞坐標原點O逆時針旋轉90°的對應點的位置,然后順次連接即可,再根據平面直角坐標系寫出點B的對應點的坐標;
(3)分AB、BC、AC是平行四邊形的對角線三種情況解答.【詳解】解:(1)如圖所示△A′B′C′即為所求;
(2)如圖所示,△A''B''(3)D(-7,3)或(-5,-3)或(3,3).
當以BC為對角線時,點D3的坐標為(-5,-3);
當以AB為對角線時,點D2的坐標為(-7,3);
當以AC為對角線時,點D1坐標為(3,3).【點睛】本題考查了利用旋轉變換作圖,平行四邊形的對邊相等,熟記性質以及網格結構準確找出對應點的位置是解題的關鍵.24.(1)詳見解析;(2)【解析】【分析】(1)根據平行四邊形的判定定理得到四邊形OBEC是平行四邊形,根據矩形的性質得到AC=BD,OB=BD,OC=AC,根據菱形的判定定理即可得到結論;(2)根據平行線的性質得到∠OAF=∠BEF,根據全等三角形的性質得到OF=BF,推出△OBC是等邊三角形,根據等邊三角形的性質得到CF⊥OB,解直角三角形即可得到結論.【詳解】解:,,四邊形OBEC是平行四邊形,四邊形ABCD是矩形,,,,,平行四邊形OBEC是菱形;,,,在與中,,≌,,,,,,,是等邊三角形,,.故答案為.【點睛】本題考查了菱形的判定和性質,矩形的性質,全等三角形的判定和性質,等邊三角形的性質,熟練掌握矩形的性質定理是解題的關鍵.25.(1)100,50;(2)10.【解析】【分析】(1)設乙工程隊每天能完成綠化的面積是x(m2),根據在獨立完成面積為400m2區域的綠化時,甲隊比乙隊少用4天,列出方程,求解即可;(2)設應安排甲隊工作
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專注實踐經驗的證券從業資格證考試試題及答案
- 注冊會計師考試內容深度剖析試題及答案
- 船體亮化施工方案怎么寫
- 系統分析師考試全面提高的試題及答案
- 糕點烘焙設備操作與維護考核試卷
- 寵物收養家庭寵物養護與寵物友善交通考核試卷
- 2024年項目管理師考題重點試題及答案
- 科技會展參展商關系維護與管理考核試卷
- 燈具銷售中的價格策略與利潤控制考核試卷
- 纖維板行業發展趨勢預測分析考核試卷
- 工程施工服務方案范文
- 重大疾病證明書樣本
- 遼寧省協作校2024-2025學年高二化學下學期期中試題
- 埋地塑料排水管道施工
- 勞工及道德體系法律法規清單
- 寬帶賬號注銷委托書
- 嬰幼兒發展引導員(三級)理論試題及答案
- 2024低預應力預制混凝土實心方樁
- 初中物理中考實驗題總匯
- (高清版)JTG 2111-2019 小交通量農村公路工程技術標準
- 環境因素識別評價表
評論
0/150
提交評論