人教版九年級數學上冊圓《探究四點共圓的條件》同步學案_第1頁
人教版九年級數學上冊圓《探究四點共圓的條件》同步學案_第2頁
人教版九年級數學上冊圓《探究四點共圓的條件》同步學案_第3頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

數學活動2《探究四點共圓的條件》學案一、【知識回顧】1.到定點的距離等于定長的點在同一個圓上.2.作圓的關鍵是確定圓心的位置和半徑的大小.二、【提出問題】A?問題1:在平面內過一點A作圓.A?AA?B?問題2:在平面內過兩點A,B作圓.問題3:在平面內過三點A,B,C作圓.①當三點不在同一直線上時.②當三點在同一直線上時.知識鏈接:反證法的基本思路:假設命題的結論不成立;②經過推理得出矛盾;③得出原命題成立.問題4:在平面內過A,B,C,D四點作圓.當四點在同一條直線上時.當四點中任意三點在同一條直線上時.當四點中任意三點不在同一直線上時.三、【活動探究】A引例:過下列四邊形中的四個頂點能作一個圓嗎?A正方形DDAAD正方形DDAAD矩形矩形CCCBBBCCCBBB等腰梯形等腰梯形AADADADADABB特殊的箏形DC一般的平行四邊形CB特殊的箏形DC一般的平行四邊形CBCB【思考】正方形、矩形、等腰梯形、特殊的箏形有哪些共同特征?邊的方面

角的方面對角線的方面邊【探究的思路】:四邊形【猜想】:.【猜想驗證】驗證:.已知:在四邊形ABCD中,∠ABC+∠ADC=180°.求證:四邊形ABCD的四個頂點共圓.備用圖備用圖2備用圖1四、【歸納總結】四點共圓的條件:方法1:.方法2:.例題:如圖在四邊形ABCD中,對角線BD平分∠ABC,∠A+∠C=180°.備用圖求證:AD=CD備用圖五、【基礎鞏固】1.如圖1,∠DCE是四邊形ABCD的一個外角,如果∠DCE=∠A,那么同時經過點A,B,C,D(填“能”或“不能”)作一個圓.圖1圖1圖3圖圖3圖22.如圖2,Rt△ABC和Rt△ADC中,∠ADC=∠ABC=90°,∠CAD=20°,則∠DBA=.3.(2019德州)如圖3,點O是線段BC的中點,點A,C,D到點O的距離相等,若∠ABC=40°,則∠ADC=.六、【拓展提升】4.如圖4,在正方形ABCD中,點E,F分別是BC,CD邊的中點,連接AE,BF交于點P,連接PD,求tan∠APD的值.圖4圖4七、【課堂小結】1.本節課我們學習了哪些知識?2.本節課運用了哪些數學思想方法?八、【課后鞏固】1.如圖5,四邊形ABCD的四個頂點都在⊙O上,∠ADC=85°,在探究“四點共圓的條件”的活動中,知道∠ADC與∠ABC互補,若∠EBC是四邊形ABCD的一個外角,則∠EBC=.圖6圖7圖6圖7圖5圖52.如圖6,四邊形ABCD內接于⊙O,若∠BOD=136°,則它的一個外角∠DCE等于.如圖7,在△ABC中,AB=AC,點D在BA延長線上,點E在BC邊上,∠CAE=2∠ACD,∠BAE=60°.(1)求證:A,E,C,D四點共圓.(2)若AD=3,△ABE的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論