廣東省梅縣高級中學2025屆高考壓軸卷數學試卷含解析_第1頁
廣東省梅縣高級中學2025屆高考壓軸卷數學試卷含解析_第2頁
廣東省梅縣高級中學2025屆高考壓軸卷數學試卷含解析_第3頁
廣東省梅縣高級中學2025屆高考壓軸卷數學試卷含解析_第4頁
廣東省梅縣高級中學2025屆高考壓軸卷數學試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省梅縣高級中學2025屆高考壓軸卷數學試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在直三棱柱中,己知,,,則異面直線與所成的角為()A. B. C. D.2.“”是“直線與互相平行”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件3.設是定義在實數集上的函數,滿足條件是偶函數,且當時,,則,,的大小關系是()A. B. C. D.4.“”是“函數的圖象關于直線對稱”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.已知復數在復平面內對應的點的坐標為,則下列結論正確的是()A. B.復數的共軛復數是C. D.6.函數(),當時,的值域為,則的范圍為()A. B. C. D.7.已知函數,若曲線上始終存在兩點,,使得,且的中點在軸上,則正實數的取值范圍為()A. B. C. D.8.有一改形塔幾何體由若千個正方體構成,構成方式如圖所示,上層正方體下底面的四個頂點是下層正方體上底面各邊的中點.已知最底層正方體的棱長為8,如果改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個數至少是()A.8 B.7 C.6 D.49.已知雙曲線:的左右焦點分別為,,為雙曲線上一點,為雙曲線C漸近線上一點,,均位于第一象限,且,,則雙曲線的離心率為()A. B. C. D.10.已知為兩條不重合直線,為兩個不重合平面,下列條件中,的充分條件是()A.∥ B.∥C.∥∥ D.11.已知復數z,則復數z的虛部為()A. B. C.i D.i12.執行如圖所示的程序框圖,則輸出的的值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.驗證碼就是將一串隨機產生的數字或符號,生成一幅圖片,圖片里加上一些干擾象素(防止),由用戶肉眼識別其中的驗證碼信息,輸入表單提交網站驗證,驗證成功后才能使用某項功能.很多網站利用驗證碼技術來防止惡意登錄,以提升網絡安全.在抗疫期間,某居民小區電子出入證的登錄驗證碼由0,1,2,…,9中的五個數字隨機組成.將中間數字最大,然后向兩邊對稱遞減的驗證碼稱為“鐘型驗證碼”(例如:如14532,12543),已知某人收到了一個“鐘型驗證碼”,則該驗證碼的中間數字是7的概率為__________.14.已知函數的部分圖象如圖所示,則的值為____________.15.如圖,在棱長為2的正方體中,點、分別是棱,的中點,是側面正方形內一點(含邊界),若平面,則線段長度的取值范圍是______.16.若函數滿足:①是偶函數;②的圖象關于點對稱.則同時滿足①②的,的一組值可以分別是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在長方體中,,為的中點,為的中點,為線段上一點,且滿足,為的中點.(1)求證:平面;(2)求二面角的余弦值.18.(12分)如圖,四棱錐P﹣ABCD的底面是梯形.BC∥AD,AB=BC=CD=1,AD=2,,(Ⅰ)證明;AC⊥BP;(Ⅱ)求直線AD與平面APC所成角的正弦值.19.(12分)如圖,四棱錐的底面為直角梯形,,,,底面,且,為的中點.(1)證明:;(2)設點是線段上的動點,當直線與直線所成的角最小時,求三棱錐的體積.20.(12分)已知,.(1)當時,證明:;(2)設直線是函數在點處的切線,若直線也與相切,求正整數的值.21.(12分)已知橢圓與拋物線有共同的焦點,且離心率為,設分別是為橢圓的上下頂點(1)求橢圓的方程;(2)過點與軸不垂直的直線與橢圓交于不同的兩點,當弦的中點落在四邊形內(含邊界)時,求直線的斜率的取值范圍.22.(10分)已知函數.(1)當時,求曲線在點的切線方程;(2)討論函數的單調性.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

由條件可看出,則為異面直線與所成的角,可證得三角形中,,解得從而得出異面直線與所成的角.【詳解】連接,,如圖:又,則為異面直線與所成的角.因為且三棱柱為直三棱柱,∴∴面,∴,又,,∴,∴,解得.故選C【點睛】考查直三棱柱的定義,線面垂直的性質,考查了異面直線所成角的概念及求法,考查了邏輯推理能力,屬于基礎題.2、A【解析】

利用兩條直線互相平行的條件進行判定【詳解】當時,直線方程為與,可得兩直線平行;若直線與互相平行,則,解得,,則“”是“直線與互相平行”的充分不必要條件,故選【點睛】本題主要考查了兩直線平行的條件和性質,充分條件,必要條件的定義和判斷方法,屬于基礎題.3、C【解析】∵y=f(x+1)是偶函數,∴f(-x+1)=f(x+1),即函數f(x)關于x=1對稱.

∵當x≥1時,為減函數,∵f(log32)=f(2-log32)=f()且==log34,log34<<3,∴b>a>c,

故選C4、A【解析】

先求解函數的圖象關于直線對稱的等價條件,得到,分析即得解.【詳解】若函數的圖象關于直線對稱,則,解得,故“”是“函數的圖象關于直線對稱”的充分不必要條件.故選:A【點睛】本題考查了充分不必要條件的判斷,考查了學生邏輯推理,概念理解,數學運算的能力,屬于基礎題.5、D【解析】

首先求得,然后根據復數乘法運算、共軛復數、復數的模、復數除法運算對選項逐一分析,由此確定正確選項.【詳解】由題意知復數,則,所以A選項不正確;復數的共軛復數是,所以B選項不正確;,所以C選項不正確;,所以D選項正確.故選:D【點睛】本小題考查復數的幾何意義,共軛復數,復數的模,復數的乘法和除法運算等基礎知識;考查運算求解能力,推理論證能力,數形結合思想.6、B【解析】

首先由,可得的范圍,結合函數的值域和正弦函數的圖像,可求的關于實數的不等式,解不等式即可求得范圍.【詳解】因為,所以,若值域為,所以只需,∴.故選:B【點睛】本題主要考查三角函數的值域,熟悉正弦函數的單調性和特殊角的三角函數值是解題的關鍵,側重考查數學抽象和數學運算的核心素養.7、D【解析】

根據中點在軸上,設出兩點的坐標,,().對分成三類,利用則,列方程,化簡后求得,利用導數求得的值域,由此求得的取值范圍.【詳解】根據條件可知,兩點的橫坐標互為相反數,不妨設,,(),若,則,由,所以,即,方程無解;若,顯然不滿足;若,則,由,即,即,因為,所以函數在上遞減,在上遞增,故在處取得極小值也即是最小值,所以函數在上的值域為,故.故選D.【點睛】本小題主要考查平面平面向量數量積為零的坐標表示,考查化歸與轉化的數學思想方法,考查利用導數研究函數的最小值,考查分析與運算能力,屬于較難的題目.8、A【解析】

則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,以此類推,能求出改形塔的最上層正方體的邊長小于1時該塔形中正方體的個數的最小值的求法.【詳解】最底層正方體的棱長為8,則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,從下往上第五層正方體的棱長為:,從下往上第六層正方體的棱長為:,從下往上第七層正方體的棱長為:,從下往上第八層正方體的棱長為:,∴改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個數至少是8.故選:A.【點睛】本小題主要考查正方體有關計算,屬于基礎題.9、D【解析】由雙曲線的方程的左右焦點分別為,為雙曲線上的一點,為雙曲線的漸近線上的一點,且都位于第一象限,且,可知為的三等分點,且,點在直線上,并且,則,,設,則,解得,即,代入雙曲線的方程可得,解得,故選D.點睛:本題考查了雙曲線的幾何性質,離心率的求法,考查了轉化思想以及運算能力,雙曲線的離心率是雙曲線最重要的幾何性質,求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據一個條件得到關于的齊次式,轉化為的齊次式,然后轉化為關于的方程(不等式),解方程(不等式),即可得(的取值范圍).10、D【解析】

根據面面垂直的判定定理,對選項中的命題進行分析、判斷正誤即可.【詳解】對于A,當,,時,則平面與平面可能相交,,,故不能作為的充分條件,故A錯誤;對于B,當,,時,則,故不能作為的充分條件,故B錯誤;對于C,當,,時,則平面與平面相交,,,故不能作為的充分條件,故C錯誤;對于D,當,,,則一定能得到,故D正確.故選:D.【點睛】本題考查了面面垂直的判斷問題,屬于基礎題.11、B【解析】

利用復數的運算法則、虛部的定義即可得出【詳解】,則復數z的虛部為.故選:B.【點睛】本題考查了復數的運算法則、虛部的定義,考查了推理能力與計算能力,屬于基礎題.12、B【解析】

列出循環的每一步,進而可求得輸出的值.【詳解】根據程序框圖,執行循環前:,,,執行第一次循環時:,,所以:不成立.繼續進行循環,…,當,時,成立,,由于不成立,執行下一次循環,,,成立,,成立,輸出的的值為.故選:B.【點睛】本題考查的知識要點:程序框圖的循環結構和條件結構的應用,主要考查學生的運算能力和轉換能力,屬于基礎題型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

首先判斷出中間號碼的所有可能取值,由此求得基本事件的總數以及中間數字是的事件數,根據古典概型概率計算公式計算出所求概率.【詳解】根據“鐘型驗證碼”中間數字最大,然后向兩邊對稱遞減,所以中間的數字可能是.當中間是時,其它個數字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數有種.當中間是時,其它個數字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數有種.當中間是時,其它個數字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數有種.當中間是時,其它個數字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數有種.當中間是時,其它個數字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數有種.當中間是時,其它個數字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數有種.所以該驗證碼的中間數字是7的概率為.故答案為:【點睛】本小題主要考查古典概型概率計算,考查分類加法計數原理、分類乘法計數原理的應用,考查運算求解能力,屬于中檔題.14、【解析】

由圖可得的周期、振幅,即可得,再將代入可解得,進一步求得解析式及.【詳解】由圖可得,,所以,即,又,即,,又,故,所以,.故答案為:【點睛】本題考查由圖象求解析式及函數值,考查學生識圖、計算等能力,是一道中檔題.15、【解析】

取中點,連結,,推導出平面平面,從而點在線段上運動,作于,由,能求出線段長度的取值范圍.【詳解】取中點,連結,,在棱長為2的正方體中,點、分別是棱、的中點,,,,,平面平面,是側面正方形內一點(含邊界),平面,點在線段上運動,在等腰△中,,,作于,由等面積法解得:,,線段長度的取值范圍是,.故答案為:,.【點睛】本題考查線段長的取值范圍的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題.16、,【解析】

根據是偶函數和的圖象關于點對稱,即可求出滿足條件的和.【詳解】由是偶函數及,可取,則,由的圖象關于點對稱,得,,即,,可取.故,的一組值可以分別是,.故答案為:,.【點睛】本題主要考查了正弦型三角函數的性質,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】

(1)解法一:作的中點,連接,.利用三角形的中位線證得,利用梯形中位線證得,由此證得平面平面,進而證得平面.解法二:建立空間直角坐標系,通過證明直線的方向向量和平面的法向量垂直,證得平面.(2)利用平面和平面法向量,計算出二面角的余弦值.【詳解】(1)法一:作的中點,連接,.又為的中點,∴為的中位線,∴,又為的中點,∴為梯形的中位線,∴,在平面中,,在平面中,,∴平面平面,又平面,∴平面.另解:(法二)∵在長方體中,,,兩兩互相垂直,建立空間直角坐標系如圖所示,則,,,,,,,,,,,.(1)設平面的一個法向量為,則,令,則,.∴,又,∵,,又平面,平面.(2)設平面的一個法向量為,則,令,則,.∴.同理可算得平面的一個法向量為∴,又由圖可知二面角的平面角為一個鈍角,故二面角的余弦值為.【點睛】本小題考查線面的位置關系,空間向量與線面角,二面角等基礎知識,考查空間想象能力,推理論證能力,運算求解能力,數形結合思想,化歸與轉化思想.18、(Ⅰ)見解析(Ⅱ).【解析】

(I)取的中點,連接,通過證明平面得出;(II)以為原點建立坐標系,求出平面的法向量,通過計算與的夾角得出與平面所成角.【詳解】(I)證明:取AC的中點M,連接PM,BM,∵AB=BC,PA=PC,∴AC⊥BM,AC⊥PM,又BM∩PM=M,∴AC⊥平面PBM,∵BP?平面PBM,∴AC⊥BP.(II)解:∵底面ABCD是梯形.BC∥AD,AB=BC=CD=1,AD=2,∴∠ABC=120°,∵AB=BC=1,∴AC,BM,∴AC⊥CD,又AC⊥BM,∴BM∥CD.∵PA=PC,CM,∴PM,∵PB,∴cos∠BMP,∴∠PMB=120°,以M為原點,以MB,MC的方向為x軸,y軸的正方向,以平面ABCD在M處的垂線為z軸建立坐標系M﹣xyz,如圖所示:則A(0,,0),C(0,,0),P(,0,),D(﹣1,,0),∴(﹣1,,0),(0,,0),(,,),設平面ACP的法向量為(x,y,z),則,即,令x得(,0,1),∴cos,,∴直線AD與平面APC所成角的正弦值為|cos,|.【點睛】本題考查異面直線垂直的證明,考查直線與平面所成角的正弦值的求法,解題時要認真審題,注意向量法的合理使用,難度一般.19、(1)見解析;(2).【解析】

(1)要證明,只需證明平面即可;(2)以C為原點,分別以的方向為軸、軸、軸的正方向,建立空間直角坐標系,利用向量法求,并求其最大值從而確定出使問題得到解決.【詳解】(1)連結AC、AE,由已知,四邊形ABCE為正方形,則①,因為底面,則②,由①②知平面,所以.(2)以C為原點,建立如圖所示的空間直角坐標系,則,,,,所以,,,設,,則,所以,設,則,所以當,即時,取最大值,從而取最小值,即直線與直線所成的角最小,此時,則,因為,,則平面,從而M到平面的距離,所以.【點睛】本題考查線面垂直證線線垂直、異面直線直線所成角計算、換元法求函數最值以及等體積法求三棱錐的體積,考查的內容較多,計算量較大,解決此類問題最關鍵是準確寫出點的坐標,是一道中檔題.20、(1)證明見解析;(2).【解析】

(1)令,求導,可知單調遞增,且,,因而在上存在零點,在此取得最小值,再證最小值大于零即可.(2)根據題意得到在點處的切線的方程①,再設直線與相切于點,有,即,再求得在點處的切線直線的方程為②由①②可得,即,根據,轉化為,,令,轉化為要使得在上存在零點,則只需,求解.【詳解】(1)證明:設,則,單調遞增,且,,因而在上存在零點,且在上單調遞減,在上單調遞增,從而的最小值為.所以,即.(2),故,故切線的方程為①設直線與相切于點,注意到,從而切線斜率為,因此,而,從而直線的方程也為②由①②可知,故,由為正整數可知,,所以,,令,則,當時,為單調遞增函數,且,從而在上無零點;當時,要使得在上存在零點,則只需,,因為為單調遞增函數,,所以;因為為單調遞增函數,且,因此;因為為整數,且,所以.【點睛】本題主要考查導數在函數中的綜合應用,還考查了轉化

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論