




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省惠民縣第二中學2025屆高考數學三模試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,,若成立,則的最小值為()A.0 B.4 C. D.2.某網店2019年全年的月收支數據如圖所示,則針對2019年這一年的收支情況,下列說法中錯誤的是()A.月收入的極差為60 B.7月份的利潤最大C.這12個月利潤的中位數與眾數均為30 D.這一年的總利潤超過400萬元3.在中,角的對邊分別為,,若,,且,則的面積為()A. B. C. D.4.已知邊長為4的菱形,,為的中點,為平面內一點,若,則()A.16 B.14 C.12 D.85.集合,則集合的真子集的個數是A.1個 B.3個 C.4個 D.7個6.已知是的共軛復數,則()A. B. C. D.7.已知雙曲線:(,)的右焦點與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長為,則雙曲線的離心率為()A.2 B. C. D.38.已知集合,,則()A. B.C. D.9.若集合,,則A. B. C. D.10.設函數的定義域為,命題:,的否定是()A., B.,C., D.,11.已知復數,則的虛部是()A. B. C. D.112.一個由兩個圓柱組合而成的密閉容器內裝有部分液體,小圓柱底面半徑為,大圓柱底面半徑為,如圖1放置容器時,液面以上空余部分的高為,如圖2放置容器時,液面以上空余部分的高為,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等比數列{an}的前n項和為Sn,若a214.函數與的圖象上存在關于軸的對稱點,則實數的取值范圍為______.15.在平面直角坐標系中,雙曲線的一條準線與兩條漸近線所圍成的三角形的面積為______.16.在等差數列()中,若,,則的值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知.(1)若,求函數的單調區間;(2)若不等式恒成立,求實數的取值范圍.18.(12分)已知橢圓的短軸長為,左右焦點分別為,,點是橢圓上位于第一象限的任一點,且當時,.(1)求橢圓的標準方程;(2)若橢圓上點與點關于原點對稱,過點作垂直于軸,垂足為,連接并延長交于另一點,交軸于點.(ⅰ)求面積最大值;(ⅱ)證明:直線與斜率之積為定值.19.(12分)在中,角所對的邊分別為,,的面積.(1)求角C;(2)求周長的取值范圍.20.(12分)已知△ABC的內角A,B,C的對邊分別為a,b,c,若c=2a,bsinB﹣asinA=asinC.(Ⅰ)求sinB的值;(Ⅱ)求sin(2B+)的值.21.(12分)從拋物線C:()外一點作該拋物線的兩條切線PA、PB(切點分別為A、B),分別與x軸相交于C、D,若AB與y軸相交于點Q,點在拋物線C上,且(F為拋物線的焦點).(1)求拋物線C的方程;(2)①求證:四邊形是平行四邊形.②四邊形能否為矩形?若能,求出點Q的坐標;若不能,請說明理由.22.(10分)已知函數,.(1)當時,求函數的值域;(2),,求實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
令,進而求得,再轉化為函數的最值問題即可求解.【詳解】∵∴(),∴,令:,,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【點睛】本題主要考查了導數在研究函數最值中的應用,考查了轉化的數學思想,恰當的用一個未知數來表示和是本題的關鍵,屬于中檔題.2、D【解析】
直接根據折線圖依次判斷每個選項得到答案.【詳解】由圖可知月收入的極差為,故選項A正確;1至12月份的利潤分別為20,30,20,10,30,30,60,40,30,30,50,30,7月份的利潤最高,故選項B正確;易求得總利潤為380萬元,眾數為30,中位數為30,故選項C正確,選項D錯誤.故選:.【點睛】本題考查了折線圖,意在考查學生的理解能力和應用能力.3、C【解析】
由,可得,化簡利用余弦定理可得,解得.即可得出三角形面積.【詳解】解:,,且,,化為:.,解得..故選:.【點睛】本題考查了向量共線定理、余弦定理、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題.4、B【解析】
取中點,可確定;根據平面向量線性運算和數量積的運算法則可求得,利用可求得結果.【詳解】取中點,連接,,,即.,,,則.故選:.【點睛】本題考查平面向量數量積的求解問題,涉及到平面向量的線性運算,關鍵是能夠將所求向量進行拆解,進而利用平面向量數量積的運算性質進行求解.5、B【解析】
由題意,結合集合,求得集合,得到集合中元素的個數,即可求解,得到答案.【詳解】由題意,集合,則,所以集合的真子集的個數為個,故選B.【點睛】本題主要考查了集合的運算和集合中真子集的個數個數的求解,其中作出集合的運算,得到集合,再由真子集個數的公式作出計算是解答的關鍵,著重考查了推理與運算能力.6、A【解析】
先利用復數的除法運算法則求出的值,再利用共軛復數的定義求出a+bi,從而確定a,b的值,求出a+b.【詳解】i,∴a+bi=﹣i,∴a=0,b=﹣1,∴a+b=﹣1,故選:A.【點睛】本題主要考查了復數代數形式的乘除運算,考查了共軛復數的概念,是基礎題.7、A【解析】
由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【詳解】由已知,,漸近線方程為,因為圓被雙曲線的一條漸近線截得的弦長為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.【點睛】本題考查雙曲線離心率的問題,涉及到直線與圓的位置關系,考查學生的運算能力,是一道容易題.8、C【解析】
求出集合,計算出和,即可得出結論.【詳解】,,,.故選:C.【點睛】本題考查交集和并集的計算,考查計算能力,屬于基礎題.9、C【解析】
解一元次二次不等式得或,利用集合的交集運算求得.【詳解】因為或,,所以,故選C.【點睛】本題考查集合的交運算,屬于容易題.10、D【解析】
根據命題的否定的定義,全稱命題的否定是特稱命題求解.【詳解】因為:,是全稱命題,所以其否定是特稱命題,即,.故選:D【點睛】本題主要考查命題的否定,還考查了理解辨析的能力,屬于基礎題.11、C【解析】
化簡復數,分子分母同時乘以,進而求得復數,再求出,由此得到虛部.【詳解】,,所以的虛部為.故選:C【點睛】本小題主要考查復數的乘法、除法運算,考查共軛復數的虛部,屬于基礎題.12、B【解析】
根據空余部分體積相等列出等式即可求解.【詳解】在圖1中,液面以上空余部分的體積為;在圖2中,液面以上空余部分的體積為.因為,所以.故選:B【點睛】本題考查圓柱的體積,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、-2【解析】試題分析:∵a2考點:等比數列性質及求和公式14、【解析】
先求得與關于軸對稱的函數,將問題轉化為與的圖象有交點,即方程有解.對分成三種情況進行分類討論,由此求得實數的取值范圍.【詳解】因為關于軸對稱的函數為,因為函數與的圖象上存在關于軸的對稱點,所以與的圖象有交點,方程有解.時符合題意.時轉化為有解,即,的圖象有交點,是過定點的直線,其斜率為,若,則函數與的圖象必有交點,滿足題意;若,設,相切時,切點的坐標為,則,解得,切線斜率為,由圖可知,當,即時,,的圖象有交點,此時,與的圖象有交點,函數與的圖象上存在關于軸的對稱點,綜上可得,實數的取值范圍為.故答案為:【點睛】本小題主要考查利用導數求解函數的零點以及對稱性,函數與方程等基礎知識,考查學生分析問題,解決問題的能力,推理與運算求解能力,轉化與化歸思想和應用意識.15、【解析】
求出雙曲線的漸近線方程,求出準線方程,求出三角形的頂點的坐標,然后求解面積.【詳解】解:雙曲線:雙曲線中,,,則雙曲線的一條準線方程為,雙曲線的漸近線方程為:,可得準線方程與雙曲線的兩條漸近線所圍成的三角形的頂點的坐標,,,,則三角形的面積為.故答案為:【點睛】本題考查雙曲線方程的應用,雙曲線的簡單性質的應用,考查計算能力,屬于中檔題.16、-15【解析】
是等差數列,則有,可得的值,再由可得,計算即得.【詳解】數列是等差數列,,又,,,故.故答案為:【點睛】本題考查等差數列的性質,也可以由已知條件求出和公差,再計算.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)答案不唯一,具體見解析(2)【解析】
(1)分類討論,利用導數的正負,可得函數的單調區間.(2)分離出參數后,轉化為函數的最值問題解決,注意函數定義域.【詳解】(1)由得或①當時,由,得.由,得或此時的單調遞減區間為,單調遞增區間為和.②當時,由,得由,得或此時的單調遞減區間為,單調遞增區間為和綜上:當時,單調遞減區間為,單調遞增區間為和當時,的單調遞減區間為,單調遞增區間為和.(2)依題意,不等式恒成立等價于在上恒成立,可得,在上恒成立,設,則令,得,(舍)當時,;當時,當變化時,,變化情況如下表:10單調遞增單調遞減∴當時,取得最大值,,∴.∴的取值范圍是.【點睛】本題主要考查了利用導數證明函數的單調性以及利用導數研究不等式的恒成立問題,屬于中檔題.18、(1);(2)(ⅰ);(ⅱ)證明見解析.【解析】
(1)由,解方程組即可得到答案;(2)(ⅰ)設,,則,,易得,注意到,利用基本不等式得到的最大值即可得到答案;(ⅱ)設直線斜率為,直線方程為,聯立橢圓方程得到的坐標,再利用兩點的斜率公式計算即可.【詳解】(1)設,由,得.將代入,得,即,由,解得,所以橢圓的標準方程為.(2)設,,則,(ⅰ)易知為的中位線,所以,所以,又滿足,所以,得,故,當且僅當,即,時取等號,所以面積最大值為.(ⅱ)記直線斜率為,則直線斜率為,所以直線方程為.由,得,由韋達定理得,所以,代入直線方程,得,于是,直線斜率,所以直線與斜率之積為定值.【點睛】本題考查直線與橢圓的位置關系,涉及到橢圓中的最值及定值問題,在解橢圓與直線的位置關系的答題時,一般會用到根與系數的關系,考查學生的數學運算求解能力,是一道有一定難度的題.19、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由可得到,代入,結合正弦定理可得到,再利用余弦定理可求出的值,即可求出角;(Ⅱ)由,并結合正弦定理可得到,利用,,可得到,進而可求出周長的范圍.【詳解】解:(Ⅰ)由可知,∴.由正弦定理得.由余弦定理得,∴.(Ⅱ)由(Ⅰ)知,∴,.的周長為.∵,∴,∴,∴的周長的取值范圍為.【點睛】本題考查了正弦定理、余弦定理在解三角形中的運用,考查了三角形的面積公式,考查了學生分析問題、解決問題的能力,屬于基礎題.20、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)根據條件由正弦定理得,又c=2a,所以,由余弦定理算出,進而算出;(Ⅱ)由二倍角公式算出,代入兩角和的正弦公式計算即可.【詳解】(Ⅰ)bsinB﹣asinA=asinC,所以由正弦定理得,又c=2a,所以,由余弦定理得:,又,所以;(Ⅱ),.【點睛】本題主要考查了正余弦定理的應用,運用二倍角公式和兩角和的正弦公式求值,考查了學生的運算求解能力.21、(1);(2)①證明見解析;②能,.【解析】
(1)根據拋物線的定義,求出,即可求拋物線C的方程;(2)①設,,寫出切線的方程,解方程組求出點的坐標.設點,直線AB的方程,代入拋物線方程,利用韋達定理得到點的坐標,寫出點的坐標,,可得線段相互平分,即證四邊形是平行四邊形;②若四邊形為矩形,則,求出,即得點Q的坐標.【詳解】(1)因為,所以,即拋物線C的方程是.(2)①證明:由得,.設,,則直線PA的方程為(ⅰ),則直線PB的方程為(ⅱ),由(ⅰ)和(ⅱ)解得:,,所以.設點,則直線AB的方程為.由得,則,,所以,所以線段PQ被x軸平分,即被線段CD平分.在①中,令解得,所以,同理得,所以線段CD的中點坐標為,即,又因為直線PQ的方程為,所以線段CD的中點在直線PQ上,即線段CD被線段PQ平分.因此,四邊形是平行四邊形.②由①知,四邊形是平行四邊形.若四邊形是矩形,則,即,解得,故當點Q為,即為拋物線的焦點時,四邊形是矩形.【點睛】本題考查拋物線的方程,考查直線和拋物線的位置關系,屬于難題.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 合伙合同樣本范本
- 2024湖北省民間工藝技師學院工作人員招聘考試及答案
- 2024海南衛生健康職業學院工作人員招聘考試及答案
- 高端育兒嫂服務協議合同
- 自愿放棄社保免責合同范本
- 能源產品銷售合同
- 小型商鋪租賃合同典范
- 運動解剖學模擬題+參考答案
- 正式入職合同書標準范本
- 管理人員的培訓
- 景區安全管理教育培訓
- 無錫移動推拉棚施工方案
- DB11T 1871-2021 建筑工程輪扣式鋼管腳手架安全技術規程
- 洗胃技術操作流程及評分標準
- 俄烏沖突專題俄羅斯和烏克蘭的恩怨情仇解讀課件
- 登高車高空作業施工方案
- 馮德全早教方案(0歲)
- 2024年福建省衛生事業單位招聘(醫學基礎知識)考試題庫寶典(含答案)
- 《人工智能導論》(第2版)高職全套教學課件
- 電子商務數據分析基礎(第二版) 課件 模塊1、2 電子商務數據分析概述、基礎數據采集
- 知道網課智慧《幸福心理學》測試答案
評論
0/150
提交評論