




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內…………不…………要…………答…………題…………第1頁,共3頁中國計量大學
《承壓設備安全技術》2023-2024學年第一學期期末試卷題號一二三四總分得分一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、計算機視覺在農業中的應用可以幫助監測農作物的生長狀況。假設要通過圖像分析判斷農作物的病蟲害程度,以下關于農業計算機視覺應用的描述,正確的是:()A.僅依靠農作物的顏色特征就能準確判斷病蟲害的程度B.不同農作物品種和生長階段對病蟲害判斷的影響不大C.結合圖像的紋理、形狀和顏色等多特征,可以更準確地評估農作物的健康狀況D.農業環境的復雜性對計算機視覺的應用沒有挑戰2、計算機視覺在無人駕駛飛行器(UAV)中的應用可以實現自主導航和環境感知。假設一個UAV需要在復雜的環境中飛行并避開障礙物。以下關于計算機視覺在UAV中的描述,哪一項是錯誤的?()A.可以通過視覺傳感器獲取周圍環境的信息,包括地形、建筑物和其他障礙物B.能夠實時分析圖像,計算與障礙物的距離和相對速度,為飛行決策提供依據C.計算機視覺在UAV中的應用完全不需要與其他傳感器(如慣性測量單元)的數據融合D.可以利用深度學習算法進行端到端的飛行控制,實現自主飛行3、計算機視覺中的語義分割旨在為圖像中的每個像素分配一個類別標簽。假設要對醫學影像中的腫瘤區域進行語義分割,以下關于模型評估指標的選擇,哪一項是最為關鍵的?()A.準確率,即正確分類的像素比例B.召回率,即正確分割出腫瘤像素的比例C.F1分數,綜合考慮準確率和召回率D.平均交并比(MIoU),衡量分割結果與真實標簽的重合程度4、計算機視覺中的深度估計是計算場景中物體與相機的距離。假設我們要為一個增強現實應用估計場景的深度信息,以下哪種深度估計方法能夠在實時性和準確性之間取得較好的平衡?()A.基于立體視覺的方法B.基于結構光的方法C.基于深度學習的單目深度估計方法D.基于飛行時間(ToF)原理的方法5、在目標檢測中,YOLO(YouOnlyLookOnce)算法的特點是()A.檢測速度快B.檢測精度高C.適用于小目標檢測D.對遮擋不敏感6、目標檢測是計算機視覺中的重要任務之一。假設要在一張城市街道的圖像中檢測出所有的行人和車輛,以下關于目標檢測算法的描述,正確的是:()A.基于傳統的圖像處理方法的目標檢測算法在復雜場景中表現優于深度學習算法B.深度學習中的單階段目標檢測算法比兩階段算法速度快,但精度較低C.目標檢測算法只需要關注目標的位置,不需要考慮目標的類別D.目標檢測的準確率不受圖像質量、光照條件和目標大小變化的影響7、計算機視覺中的圖像超分辨率重建旨在提高圖像的分辨率和細節。假設要將一張低分辨率的老照片重建為高分辨率的清晰圖像,同時要保持圖像的自然度和真實性。以下哪種圖像超分辨率重建方法最為適合?()A.基于插值的方法B.基于重建的方法C.基于深度學習的方法D.基于學習字典的方法8、在計算機視覺的全景圖像生成任務中,將多幅局部圖像拼接成一幅全景圖像。假設要生成一個城市景觀的全景圖像,以下關于全景圖像生成方法的描述,哪一項是不正確的?()A.首先需要對局部圖像進行特征提取和匹配,找到它們之間的對應關系B.可以使用圖像變形和融合技術來消除拼接處的縫隙和色差C.全景圖像生成不受拍攝角度、光照條件和相機參數的影響,能夠完美拼接任何圖像D.基于深度學習的方法能夠自動學習全景圖像的生成規律,提高拼接效果9、在計算機視覺的圖像生成任務中,假設要生成具有真實感的自然圖像。以下關于圖像生成方法的描述,正確的是:()A.生成對抗網絡(GAN)能夠生成逼真的圖像,但訓練過程不穩定,容易模式崩潰B.變分自編碼器(VAE)生成的圖像多樣性好,但真實感不如GAN生成的圖像C.自回歸模型在圖像生成中效率高,能夠快速生成高質量的圖像D.所有的圖像生成方法都能夠生成與真實世界完全一致的圖像10、計算機視覺在農業領域的應用中,例如對農作物的生長監測。假設要通過圖像分析評估農作物的健康狀況,以下哪種特征可能對判斷病蟲害的存在較為敏感?()A.農作物的顏色和紋理B.農作物的高度和形狀C.農田的土壤濕度D.農田的地理位置11、在計算機視覺的圖像超分辨率重建中,假設我們要將低分辨率的圖像重建為高分辨率圖像,同時保持圖像的細節和紋理。以下哪種深度學習架構可能在這方面表現較好?()A.卷積神經網絡(CNN)B.循環神經網絡(RNN)C.生成對抗網絡(GAN)D.自動編碼器(Autoencoder)12、在計算機視覺的三維重建任務中,假設要從一組不同角度拍攝的二維圖像中重建出物體的三維模型。這些圖像可能存在噪聲和拍攝誤差。為了獲得準確的三維重建結果,以下哪種技術是重要的?()A.基于立體視覺的方法,通過匹配不同圖像中的對應點B.直接使用二維圖像的平均信息來估計三維形狀C.忽略圖像中的噪聲和誤差,進行簡單的重建D.隨機生成三維模型,然后與二維圖像進行匹配13、計算機視覺中的場景理解是一項具有挑戰性的任務。假設要理解一個城市街道的場景圖像,包括道路、建筑物、車輛和行人等元素。以下關于場景理解方法的描述,正確的是:()A.基于語義分割的方法能夠將圖像中的每個像素分類為不同的場景元素,但無法提供元素之間的關系B.目標檢測結合語義分割可以實現對場景的初步理解,但對于復雜的場景結構難以準確描述C.基于圖模型的方法能夠很好地表示場景元素之間的關系,但建模過程復雜,計算量大D.場景理解只需要對圖像中的可見元素進行分析,不需要考慮潛在的語義信息14、計算機視覺中的虛擬現實(VR)和增強現實(AR)應用需要實時生成逼真的視覺效果。假設要在一個VR游戲中為玩家提供沉浸式的視覺體驗,或者在AR應用中準確地將虛擬物體與現實場景融合。以下哪種計算機視覺技術在實現這些效果時至關重要?()A.實時渲染技術B.空間定位與追蹤技術C.三維重建與建模技術D.以上技術綜合應用15、當處理低光照條件下拍攝的圖像時,為了增強圖像的亮度和對比度,同時減少噪聲,以下哪種圖像處理方法可能更合適?()A.直方圖均衡化B.伽馬校正C.簡單地增加圖像的整體亮度值D.不進行任何處理,保留低光照效果16、在計算機視覺的立體視覺任務中,通過兩個或多個相機獲取的圖像來計算深度信息。以下哪種立體匹配算法在精度和效率方面可能表現較好?()A.基于區域的匹配算法B.基于特征的匹配算法C.基于深度學習的匹配算法D.以上都是17、假設要構建一個能夠對服裝進行款式和顏色識別的計算機視覺系統,用于時尚推薦和庫存管理。在處理服裝圖像時,由于服裝的款式和顏色變化多樣,以下哪種特征表示方法可能更適合?()A.手工設計的特征B.基于深度學習的自動特征C.顏色直方圖D.以上都是18、在計算機視覺的圖像分割任務中,假設要將一張醫學圖像中的病變區域準確分割出來。以下關于圖像分割方法的描述,正確的是:()A.基于閾值的分割方法簡單高效,適用于所有類型的醫學圖像分割B.區域生長法能夠根據像素的相似性進行分割,但容易受到噪聲的影響C.圖割算法在處理復雜的圖像結構時表現不佳,難以得到準確的分割結果D.深度學習中的全卷積網絡(FCN)在圖像分割中無法處理不同大小的病變區域19、在計算機視覺的圖像檢索任務中,假設要從海量的圖像庫中快速找到與給定圖像相似的圖像。以下關于圖像特征表示的選擇,哪一項是需要重點考慮的?()A.選擇具有高維度的特征向量,包含豐富的圖像信息B.采用低維度但具有區分性的特征表示,提高檢索效率C.忽略特征的維度和區分性,隨機選擇一種特征表示D.只使用圖像的顏色特征,忽略形狀和紋理等特征20、計算機視覺在自動駕駛領域有重要應用。假設車輛需要根據攝像頭采集的圖像來識別道路上的交通標志,并且要在不同天氣和光照條件下都能準確識別。以下哪種方法可能有助于提高交通標志識別的魯棒性?()A.使用多個不同類型的攝像頭獲取圖像B.僅依賴顏色特征進行識別C.采用簡單的線性分類器進行標志分類D.減少訓練數據中的交通標志種類21、在計算機視覺的無人駕駛領域,環境感知是關鍵環節。假設要讓無人駕駛汽車準確感知周圍的道路狀況、車輛和行人,同時要應對惡劣天氣和復雜交通場景。以下哪種環境感知技術在這種高要求的應用中發揮著重要作用?()A.激光雷達感知B.攝像頭視覺感知C.毫米波雷達感知D.以上技術融合感知22、計算機視覺在工業檢測中的應用可以提高生產效率和質量。假設要檢測生產線上產品的表面缺陷,以下關于工業檢測中的計算機視覺技術的描述,正確的是:()A.傳統的機器視覺方法在檢測復雜的表面缺陷時比深度學習方法更可靠B.深度學習模型需要大量的有缺陷和無缺陷樣本進行訓練,才能準確檢測出各種缺陷C.工業檢測中的計算機視覺系統不需要考慮實時性和準確性的平衡D.產品的顏色和材質對表面缺陷檢測的結果沒有影響23、在計算機視覺的姿態估計任務中,例如估計人體關節的位置和姿態,以下哪種方法可能在精度和實時性之間取得較好的平衡?()A.基于模型的方法B.基于深度學習的回歸方法C.基于深度學習的分類方法D.以上都不是24、當利用計算機視覺進行圖像語義分割任務,例如將圖像中的不同物體分割出來,以下哪種深度學習架構可能在分割精度和效率方面表現較好?()A.FCNB.U-NetC.SegNetD.以上都是25、計算機視覺中的車牌識別是智能交通系統中的重要組成部分。假設要在一個高速公路收費站實現準確的車牌識別,以下關于車牌識別方法的描述,正確的是:()A.基于邊緣檢測和字符分割的方法對車牌的變形和污漬具有很強的適應性B.深度學習中的卷積神經網絡能夠直接從車牌圖像中識別出字符,但對車牌的傾斜和光照不均敏感C.車牌識別系統只需要在白天光照良好的條件下工作,夜間和惡劣天氣下無法正常運行D.車牌識別的準確率只取決于車牌圖像的清晰度,與車牌的顏色和字體無關26、計算機視覺在自動駕駛領域有廣泛的應用。假設一輛自動駕駛汽車需要識別道路上的交通標志,以下關于自動駕駛中的計算機視覺應用的描述,哪一項是不正確的?()A.多攝像頭融合可以提供更全面的道路信息,提高交通標志識別的準確性B.深度學習模型可以實時處理攝像頭采集的圖像,快速準確地識別交通標志C.除了交通標志識別,計算機視覺還可以用于車道檢測、行人檢測和障礙物檢測等任務D.自動駕駛中的計算機視覺系統完全不需要其他傳感器(如雷達、激光雷達)的輔助,僅依靠圖像信息就能實現安全可靠的駕駛27、在計算機視覺的目標跟蹤任務中,需要在連續的圖像幀中持續跟蹤一個特定的目標。假設要跟蹤一個在運動場上快速移動且形狀變化的運動員,同時存在其他相似物體的干擾。以下哪種目標跟蹤算法在這種具有挑戰性的場景下表現更佳?()A.基于卡爾曼濾波的跟蹤B.基于粒子濾波的跟蹤C.基于深度學習的跟蹤D.基于均值漂移的跟蹤28、在計算機視覺中,目標檢測是一項重要的任務。假設要開發一個能夠在城市交通場景中檢測車輛和行人的系統。以下關于目標檢測算法的選擇,哪一項是需要重點考慮的因素?()A.算法的檢測速度,以滿足實時性要求B.算法在小目標檢測上的性能,因為車輛和行人在圖像中可能較小C.算法的模型復雜度,越復雜的模型效果越好D.算法是否開源,開源的算法更易于使用29、在計算機視覺的圖像修復任務中,假設圖像中有大面積的損壞或缺失區域,以下哪種方法可能更依賴于對圖像全局結構的理解?()A.基于紋理合成的方法B.基于擴散的方法C.基于深度學習的方法D.基于樣例的方法30、在計算機視覺的圖像壓縮任務中,需要在減少數據量的同時盡量保持圖像的質量。假設要對一組高清圖像進行壓縮,以節省存儲空間和傳輸帶寬,同時要求解壓后的圖像能夠滿足一定的視覺要求。以下哪種圖像壓縮算法在這種情況下效果較好?()A.JPEG壓縮算法B.PNG壓縮算法C.WebP壓縮算法D.BPG壓縮算法二、應用題(本大題共5個小題,共25分)1、(本題5分)運用深度學習模型,對古代青銅器的年代和工藝進行鑒定。2、(本題5分)開發一個可以識別不同種類有蹄類動物的計算機視覺應用。3、(本題5分)運用圖像識別算法,對不同類型的鞋子品牌和款式進行分類和識別。4、(本題5分)利用目標檢測算法,在海洋生態圖像中檢測珊瑚白化區域。5、(本題5分)運用圖像分類技術,對不同種類的珠寶首飾進行分類。三、簡答題(本大題共5個小
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 茶葉代銷合作協議書
- 鋼管扣件保管協議書
- 運維改造合同協議書
- 閱文合同霸王協議書
- 駐場開發保密協議書
- 酒店入股經營協議書
- 修腳店合伙開店協議書
- 養雞合伙人合同協議書
- 菜園開荒租賃協議書
- 車輛交付違約協議書
- 黑龍江牡丹江旅游介紹PPT模板
- 六、回顧整理-總復習2.圖形的認識與測量(二)-平面圖形的周長和面積(課件)青島版六年級下冊數學
- 中醫養生(靈源萬應茶)
- 追索子女撫養費起訴狀
- 六年級數學質量分析PPT
- 土地平整、池塘推土、雜草灌木叢及樹木清除施工方案
- 眼鏡鏡架的整形專業培訓2課件
- 下線儀式串詞策劃
- 通用長期供銷合同范本
- 《社區治理研究國內外文獻綜述(1900字)》
- 2023浙江省學生藝術特長測試A級理論復習資料
評論
0/150
提交評論