




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
吉林省聯誼校2025屆高考數學全真模擬密押卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列函數中,圖象關于軸對稱的為()A. B.,C. D.2.甲、乙兩名學生的六次數學測驗成績(百分制)的莖葉圖如圖所示.①甲同學成績的中位數大于乙同學成績的中位數;②甲同學的平均分比乙同學的平均分高;③甲同學的平均分比乙同學的平均分低;④甲同學成績的方差小于乙同學成績的方差.以上說法正確的是()A.③④ B.①② C.②④ D.①③④3.已知為銳角,且,則等于()A. B. C. D.4.已知函數的圖象的一條對稱軸為,將函數的圖象向右平行移動個單位長度后得到函數圖象,則函數的解析式為()A. B.C. D.5.某高中高三(1)班為了沖刺高考,營造良好的學習氛圍,向班內同學征集書法作品貼在班內墻壁上,小王,小董,小李各寫了一幅書法作品,分別是:“入班即靜”,“天道酬勤”,“細節決定成敗”,為了弄清“天道酬勤”這一作品是誰寫的,班主任對三人進行了問話,得到回復如下:小王說:“入班即靜”是我寫的;小董說:“天道酬勤”不是小王寫的,就是我寫的;小李說:“細節決定成敗”不是我寫的.若三人的說法有且僅有一人是正確的,則“入班即靜”的書寫者是()A.小王或小李 B.小王 C.小董 D.小李6.甲、乙、丙三人相約晚上在某地會面,已知這三人都不會違約且無兩人同時到達,則甲第一個到、丙第三個到的概率是()A. B. C. D.7.集合,則集合的真子集的個數是A.1個 B.3個 C.4個 D.7個8.設復數滿足,則()A.1 B.-1 C. D.9.函數的定義域為()A. B. C. D.10.已知集合,集合,則()A. B. C. D.11.已知集合,則集合()A. B. C. D.12.一個算法的程序框圖如圖所示,若該程序輸出的結果是,則判斷框中應填入的條件是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數列的各項均為正數,記為數列的前項和,若,,則______.14.雙曲線的焦距為__________,漸近線方程為________.15.已知向量,滿足,,且已知向量,的夾角為,,則的最小值是__.16.已知下列命題:①命題“?x0∈R,”的否定是“?x∈R,x2+1<3x”;②已知p,q為兩個命題,若“p∨q”為假命題,則“”為真命題;③“a>2”是“a>5”的充分不必要條件;④“若xy=0,則x=0且y=0”的逆否命題為真命題.其中所有真命題的序號是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,.(1)求曲線在點處的切線方程;(2)求函數的單調區間;(3)判斷函數的零點個數.18.(12分)已知.(1)若的解集為,求的值;(2)若對任意,不等式恒成立,求實數的取值范圍.19.(12分)在正三棱柱ABCA1B1C1中,已知AB=1,AA1=2,E,F,G分別是棱AA1,AC和A1C1的中點,以為正交基底,建立如圖所示的空間直角坐標系F-xyz.(1)求異面直線AC與BE所成角的余弦值;(2)求二面角F-BC1-C的余弦值.20.(12分)如圖,四邊形是邊長為3的菱形,平面.(1)求證:平面;(2)若與平面所成角為,求二面角的正弦值.21.(12分)[選修45:不等式選講]已知都是正實數,且,求證:.22.(10分)如圖,四棱錐中,平面,,,.(I)證明:;(Ⅱ)若是中點,與平面所成的角的正弦值為,求的長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
圖象關于軸對稱的函數為偶函數,用偶函數的定義及性質對選項進行判斷可解.【詳解】圖象關于軸對稱的函數為偶函數;A中,,,故為奇函數;B中,的定義域為,不關于原點對稱,故為非奇非偶函數;C中,由正弦函數性質可知,為奇函數;D中,且,,故為偶函數.故選:D.【點睛】本題考查判斷函數奇偶性.判斷函數奇偶性的兩種方法:(1)定義法:對于函數的定義域內任意一個都有,則函數是奇函數;都有,則函數是偶函數(2)圖象法:函數是奇(偶)函數函數圖象關于原點(軸)對稱.2、A【解析】
由莖葉圖中數據可求得中位數和平均數,即可判斷①②③,再根據數據集中程度判斷④.【詳解】由莖葉圖可得甲同學成績的中位數為,乙同學成績的中位數為,故①錯誤;,,則,故②錯誤,③正確;顯然甲同學的成績更集中,即波動性更小,所以方差更小,故④正確,故選:A【點睛】本題考查由莖葉圖分析數據特征,考查由莖葉圖求中位數、平均數.3、C【解析】
由可得,再利用計算即可.【詳解】因為,,所以,所以.故選:C.【點睛】本題考查二倍角公式的應用,考查學生對三角函數式化簡求值公式的靈活運用的能力,屬于基礎題.4、C【解析】
根據輔助角公式化簡三角函數式,結合為函數的一條對稱軸可求得,代入輔助角公式得的解析式.根據三角函數圖像平移變換,即可求得函數的解析式.【詳解】函數,由輔助角公式化簡可得,因為為函數圖象的一條對稱軸,代入可得,即,化簡可解得,即,所以將函數的圖象向右平行移動個單位長度可得,則,故選:C.【點睛】本題考查了輔助角化簡三角函數式的應用,三角函數對稱軸的應用,三角函數圖像平移變換的應用,屬于中檔題.5、D【解析】
根據題意,分別假設一個正確,推理出與假設不矛盾,即可得出結論.【詳解】解:由題意知,若只有小王的說法正確,則小王對應“入班即靜”,而否定小董說法后得出:小王對應“天道酬勤”,則矛盾;若只有小董的說法正確,則小董對應“天道酬勤”,否定小李的說法后得出:小李對應“細節決定成敗”,所以剩下小王對應“入班即靜”,但與小王的錯誤的說法矛盾;若小李的說法正確,則“細節決定成敗”不是小李的,則否定小董的說法得出:小王對應“天道酬勤”,所以得出“細節決定成敗”是小董的,剩下“入班即靜”是小李的,符合題意.所以“入班即靜”的書寫者是:小李.故選:D.【點睛】本題考查推理證明的實際應用.6、D【解析】
先判斷是一個古典概型,列舉出甲、乙、丙三人相約到達的基本事件種數,再得到甲第一個到、丙第三個到的基本事件的種數,利用古典概型的概率公式求解.【詳解】甲、乙、丙三人相約到達的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6種,其中甲第一個到、丙第三個到有甲乙丙,共1種,所以甲第一個到、丙第三個到的概率是.故選:D【點睛】本題主要考查古典概型的概率求法,還考查了理解辨析的能力,屬于基礎題.7、B【解析】
由題意,結合集合,求得集合,得到集合中元素的個數,即可求解,得到答案.【詳解】由題意,集合,則,所以集合的真子集的個數為個,故選B.【點睛】本題主要考查了集合的運算和集合中真子集的個數個數的求解,其中作出集合的運算,得到集合,再由真子集個數的公式作出計算是解答的關鍵,著重考查了推理與運算能力.8、B【解析】
利用復數的四則運算即可求解.【詳解】由.故選:B【點睛】本題考查了復數的四則運算,需掌握復數的運算法則,屬于基礎題.9、C【解析】
函數的定義域應滿足故選C.10、D【解析】
可求出集合,,然后進行并集的運算即可.【詳解】解:,;.故選.【點睛】考查描述法、區間的定義,對數函數的單調性,以及并集的運算.11、D【解析】
弄清集合B的含義,它的元素x來自于集合A,且也是集合A的元素.【詳解】因,所以,故,又,,則,故集合.故選:D.【點睛】本題考查集合的定義,涉及到解絕對值不等式,是一道基礎題.12、D【解析】
首先判斷循環結構類型,得到判斷框內的語句性質,然后對循環體進行分析,找出循環規律,判斷輸出結果與循環次數以及的關系,最終得出選項.【詳解】經判斷此循環為“直到型”結構,判斷框為跳出循環的語句,第一次循環:;第二次循環:;第三次循環:,此時退出循環,根據判斷框內為跳出循環的語句,,故選D.【點睛】題主要考查程序框圖的循環結構流程圖,屬于中檔題.解決程序框圖問題時一定注意以下幾點:(1)不要混淆處理框和輸入框;(2)注意區分程序框圖是條件分支結構還是循環結構;(3)注意區分當型循環結構和直到型循環結構;(4)處理循環結構的問題時一定要正確控制循環次數;(5)要注意各個框的順序,(6)在給出程序框圖求解輸出結果的試題中只要按照程序框圖規定的運算方法逐次計算,直到達到輸出條件即可.二、填空題:本題共4小題,每小題5分,共20分。13、63【解析】
對進行化簡,可得,再根據等比數列前項和公式進行求解即可【詳解】由數列為首項為,公比的等比數列,所以63【點睛】本題考查等比數列基本量的求法,當處理復雜因式時,常用基本方法為:因式分解,約分。但解題本質還是圍繞等差和等比的基本性質14、6【解析】由題得所以焦距,故第一個空填6.由題得漸近線方程為.故第二個空填.15、【解析】
求的最小值可以轉化為求以AB為直徑的圓到點O的最小距離,由此即可得到本題答案.【詳解】如圖所示,設,由題,得,又,所以,則點C在以AB為直徑的圓上,取AB的中點為M,則,設以AB為直徑的圓與線段OM的交點為E,則的最小值是,因為,又,所以的最小值是.故答案為:【點睛】本題主要考查向量的綜合應用問題,涉及到圓的相關知識與余弦定理,考查學生的分析問題和解決問題的能力,體現了數形結合的數學思想.16、②【解析】命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”,故①錯誤;“p∨q”為假命題說明p假q假,則(p)∧(q)為真命題,故②正確;a>5?a>2,但a>2?/a>5,故“a>2”是“a>5”的必要不充分條件,故③錯誤;因為“若xy=0,則x=0或y=0”,所以原命題為假命題,故其逆否命題也為假命題,故④錯誤.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)答案見解析(3)答案見解析【解析】
(1)設曲線在點,處的切線的斜率為,可求得,,利用直線的點斜式方程即可求得答案;(2)由(Ⅰ)知,,分時,,三類討論,即可求得各種情況下的的單調區間為;(3)分與兩類討論,即可判斷函數的零點個數.【詳解】(1),,設曲線在點,處的切線的斜率為,則,又,曲線在點,處的切線方程為:,即;(2)由(1)知,,故當時,,所以在上單調遞增;當時,,;,,;的遞減區間為,遞增區間為,;當時,同理可得的遞增區間為,遞減區間為,;綜上所述,時,單調遞增為,無遞減區間;當時,的遞減區間為,遞增區間為,;當時,的遞增區間為,遞減區間為,;(3)當時,恒成立,所以無零點;當時,由,得:,只有一個零點.【點睛】本題考查利用導數研究曲線上某點的切線方程,利用導數研究函數的單調性,考查分類討論思想與推理、運算能力,屬于中檔題.18、(1);(2)【解析】
(1)利用兩邊平方法解含有絕對值的不等式,再根據根與系數的關系求出的值;(2)利用絕對值不等式求出的最小值,把不等式化為只含有的不等式,求出不等式解集即可.【詳解】(1)不等式,即兩邊平方整理得由題意知和是方程的兩個實數根即,解得(2)因為所以要使不等式恒成立,只需當時,,解得,即;當時,,解得,即;綜上所述,的取值范圍是【點睛】本題考查了含有絕對值的不等式解法與應用問題,也考查了分類討論思想,是中檔題.19、(1).(2).【解析】
(1)先根據空間直角坐標系,求得向量和向量的坐標,再利用線線角的向量方法求解.(2)分別求得平面BFC1的一個法向量和平面BCC1的一個法向量,再利用面面角的向量方法求解.【詳解】規范解答(1)因為AB=1,AA1=2,則F(0,0,0),A,C,B,E,所以=(-1,0,0),=記異面直線AC和BE所成角為α,則cosα=|cos〈〉|==,所以異面直線AC和BE所成角的余弦值為.(2)設平面BFC1的法向量為=(x1,y1,z1).因為=,=,則取x1=4,得平面BFC1的一個法向量為=(4,0,1).設平面BCC1的法向量為=(x2,y2,z2).因為=,=(0,0,2),則取x2=得平面BCC1的一個法向量為=(,-1,0),所以cos〈〉==根據圖形可知二面角F-BC1-C為銳二面角,所以二面角F-BC1-C的余弦值為.【點睛】本題主要考查了空間向量法研究空間中線線角,面面角的求法,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.20、(1)證明見解析(2)【解析】
(1)由已知線面垂直得,結合菱形對角線垂直,可證得線面垂直;(2)由已知知兩兩互相垂直.以分別為軸,軸,軸建立空間直角坐標系如圖所示,由已知線面垂直知與平面所成角為,這樣可計算出的長,寫出各點坐標,求出平面的法向量,由法向量夾角可得二面角.【詳解】證明:(1)因為平面,平面,所以.因為四邊形是菱形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 精準掌握2025年公共營養師考試試題及答案
- 藥物相互作用實例分解試題及答案
- 激光專業基礎知識考核試題及答案
- 育嬰師如何有效支持家長的育兒信心分析試題及答案
- 激光設備操作知識試題及答案
- 管理會計的試題及答案
- 蘆花鞋測試題及答案
- 行車證的試題及答案
- 藥物政策與法規研究試題及答案
- 系統管理師考試試題及答案的分析工具
- Python數據分析與數據挖掘 課件 第7章 Matplotlib
- 2023年-2024年電子物證專業考試復習題庫(含答案)
- 新能源汽車發展現狀參考文獻
- 春季行車安全注意事項春季行車安全教育
- 焊接工序首件檢驗記錄表
- 注塑工藝監控記錄表
- WORD文檔標題格式模板(五級標題)
- “四會”教學基本概述
- 延續證書承諾書格式
- 高金英講座完整版
- 技術創新的內涵與核心
評論
0/150
提交評論