




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆吉林省白城市白城市第十四中學高三第一次模擬考試數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《九章算術》有如下問題:“今有金箠,長五尺,斬本一尺,重四斤;斬末一尺,重二斤,問次一尺各重幾何?”意思是:“現在有一根金箠,長五尺在粗的一端截下一尺,重斤;在細的一端截下一尺,重斤,問各尺依次重多少?”按這一問題的顆設,假設金箠由粗到細各尺重量依次成等差數列,則從粗端開始的第二尺的重量是()A.斤 B.斤 C.斤 D.斤2.已知復數(1+i)(a+i)為純虛數(i為虛數單位),則實數a=()A.-1 B.1 C.0 D.23.在中,,,,則邊上的高為()A. B.2 C. D.4.中國古代數學著作《孫子算經》中有這樣一道算術題:“今有物不知其數,三三數之余二,五五數之余三,問物幾何?”人們把此類題目稱為“中國剩余定理”,若正整數除以正整數后的余數為,則記為,例如.現將該問題以程序框圖的算法給出,執行該程序框圖,則輸出的等于().A. B. C. D.5.窗花是貼在窗紙或窗戶玻璃上的剪紙,是中國古老的傳統民間藝術之一,它歷史悠久,風格獨特,神獸人們喜愛.下圖即是一副窗花,是把一個邊長為12的大正方形在四個角處都剪去邊長為1的小正方形后剩余的部分,然后在剩余部分中的四個角處再剪出邊長全為1的一些小正方形.若在這個窗花內部隨機取一個點,則該點不落在任何一個小正方形內的概率是()A. B. C. D.6.已知雙曲線的一條漸近線經過圓的圓心,則雙曲線的離心率為()A. B. C. D.27.設,是方程的兩個不等實數根,記().下列兩個命題()①數列的任意一項都是正整數;②數列存在某一項是5的倍數.A.①正確,②錯誤 B.①錯誤,②正確C.①②都正確 D.①②都錯誤8.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術數之源,其中河圖的排列結構是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如圖,白圈為陽數,黑點為陰數.若從這10個數中任取3個數,則這3個數中至少有2個陽數且能構成等差數列的概率為()A. B. C. D.9.某人造地球衛星的運行軌道是以地心為一個焦點的橢圓,其軌道的離心率為,設地球半徑為,該衛星近地點離地面的距離為,則該衛星遠地點離地面的距離為()A. B.C. D.10.執行下面的程序框圖,如果輸入,,則計算機輸出的數是()A. B. C. D.11.已知橢圓的左、右焦點分別為、,過的直線交橢圓于A,B兩點,交y軸于點M,若、M是線段AB的三等分點,則橢圓的離心率為()A. B. C. D.12.以,為直徑的圓的方程是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若一個正四面體的棱長為1,四個頂點在同一個球面上,則此球的表面積為_________.14.函數的最大值與最小正周期相同,則在上的單調遞增區間為______.15.已知復數,其中是虛數單位.若的實部與虛部相等,則實數的值為__________.16.根據如圖所示的偽代碼,輸出的值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,其中,.(1)函數的圖象能否與x軸相切?若能,求出實數a;若不能,請說明理由.(2)若在處取得極大值,求實數a的取值范圍.18.(12分)已知橢圓的離心率為,直線過橢圓的右焦點,過的直線交橢圓于兩點(均異于左、右頂點).(1)求橢圓的方程;(2)已知直線,為橢圓的右頂點.若直線交于點,直線交于點,試判斷是否為定值,若是,求出定值;若不是,說明理由.19.(12分)已知動圓經過點,且動圓被軸截得的弦長為,記圓心的軌跡為曲線.(1)求曲線的標準方程;(2)設點的橫坐標為,,為圓與曲線的公共點,若直線的斜率,且,求的值.20.(12分)在多面體中,四邊形是正方形,平面,,,為的中點.(1)求證:;(2)求平面與平面所成角的正弦值.21.(12分)在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達對祖國的熱愛之情,在數學中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標系中,以原點O為極點,x軸正半軸為極軸建立極坐標系.圖中的曲線就是笛卡爾心型曲線,其極坐標方程為(),M為該曲線上的任意一點.(1)當時,求M點的極坐標;(2)將射線OM繞原點O逆時針旋轉與該曲線相交于點N,求的最大值.22.(10分)已知頂點是坐標原點的拋物線的焦點在軸正半軸上,圓心在直線上的圓與軸相切,且關于點對稱.(1)求和的標準方程;(2)過點的直線與交于,與交于,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
依題意,金箠由粗到細各尺重量構成一個等差數列,則,由此利用等差數列性質求出結果.【詳解】設金箠由粗到細各尺重量依次所成得等差數列為,設首項,則,公差,.故選B【點睛】本題考查了等差數列的通項公式,考查了推理能力與計算能力,屬于基礎題.2、B【解析】
化簡得到z=a-1+a+1【詳解】z=1+ia+i=a-1+a+1i為純虛數,故a-1=0故選:B.【點睛】本題考查了根據復數類型求參數,意在考查學生的計算能力.3、C【解析】
結合正弦定理、三角形的內角和定理、兩角和的正弦公式,求得邊長,由此求得邊上的高.【詳解】過作,交的延長線于.由于,所以為鈍角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即邊上的高為.故選:C【點睛】本小題主要考查正弦定理解三角形,考查三角形的內角和定理、兩角和的正弦公式,屬于中檔題.4、C【解析】從21開始,輸出的數是除以3余2,除以5余3,滿足條件的是23,故選C.5、D【解析】
由幾何概型可知,概率應為非小正方形面積與窗花面積的比,即可求解.【詳解】由題,窗花的面積為,其中小正方形的面積為,所以所求概率,故選:D【點睛】本題考查幾何概型的面積公式的應用,屬于基礎題.6、B【解析】
求出圓心,代入漸近線方程,找到的關系,即可求解.【詳解】解:,一條漸近線,故選:B【點睛】利用的關系求雙曲線的離心率,是基礎題.7、A【解析】
利用韋達定理可得,,結合可推出,再計算出,,從而推出①正確;再利用遞推公式依次計算數列中的各項,以此判斷②的正誤.【詳解】因為,是方程的兩個不等實數根,所以,,因為,所以,即當時,數列中的任一項都等于其前兩項之和,又,,所以,,,以此類推,即可知數列的任意一項都是正整數,故①正確;若數列存在某一項是5的倍數,則此項個位數字應當為0或5,由,,依次計算可知,數列中各項的個位數字以1,3,4,7,1,8,9,7,6,3,9,2為周期,故數列中不存在個位數字為0或5的項,故②錯誤;故選:A.【點睛】本題主要考查數列遞推公式的推導,考查數列性質的應用,考查學生的綜合分析以及計算能力.8、C【解析】
先根據組合數計算出所有的情況數,再根據“3個數中至少有2個陽數且能構成等差數列”列舉得到滿足條件的情況,由此可求解出對應的概率.【詳解】所有的情況數有:種,3個數中至少有2個陽數且能構成等差數列的情況有:,共種,所以目標事件的概率.故選:C.【點睛】本題考查概率與等差數列的綜合,涉及到背景文化知識,難度一般.求解該類問題可通過古典概型的概率求解方法進行分析;當情況數較多時,可考慮用排列數、組合數去計算.9、A【解析】
由題意畫出圖形,結合橢圓的定義,結合橢圓的離心率,求出橢圓的長半軸a,半焦距c,即可確定該衛星遠地點離地面的距離.【詳解】橢圓的離心率:,(c為半焦距;a為長半軸),設衛星近地點,遠地點離地面距離分別為r,n,如圖:則所以,,故選:A【點睛】本題主要考查了橢圓的離心率的求法,注意半焦距與長半軸的求法,是解題的關鍵,屬于中檔題.10、B【解析】
先明確該程序框圖的功能是計算兩個數的最大公約數,再利用輾轉相除法計算即可.【詳解】本程序框圖的功能是計算,中的最大公約數,所以,,,故當輸入,,則計算機輸出的數是57.故選:B.【點睛】本題考查程序框圖的功能,做此類題一定要注意明確程序框圖的功能是什么,本題是一道基礎題.11、D【解析】
根據題意,求得的坐標,根據點在橢圓上,點的坐標滿足橢圓方程,即可求得結果.【詳解】由已知可知,點為中點,為中點,故可得,故可得;代入橢圓方程可得,解得,不妨取,故可得點的坐標為,則,易知點坐標,將點坐標代入橢圓方程得,所以離心率為,故選:D.【點睛】本題考查橢圓離心率的求解,難點在于根據題意求得點的坐標,屬中檔題.12、A【解析】
設圓的標準方程,利用待定系數法一一求出,從而求出圓的方程.【詳解】設圓的標準方程為,由題意得圓心為,的中點,根據中點坐標公式可得,,又,所以圓的標準方程為:,化簡整理得,所以本題答案為A.【點睛】本題考查待定系數法求圓的方程,解題的關鍵是假設圓的標準方程,建立方程組,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
將四面體補成一個正方體,通過正方體的對角線與球的半徑的關系,得到球的半徑,利用球的表面積公式,即可求解.【詳解】如圖所示,將正四面體補形成一個正方體,則正四面體的外接球與正方體的外接球表示同一個球,因為正四面體的棱長為1,所以正方體的棱長為,設球的半徑為,因為球的直徑是正方體的對角線,即,解得,所以球的表面積為.【點睛】本題主要考查了有關求得組合體的結構特征,以及球的表面積的計算,其中巧妙構造正方體,利用正方體的外接球的直徑等于正方體的對角線長,得到球的半徑是解答的關鍵,著重考查了空間想象能力,以及運算與求解能力,屬于基礎題.14、【解析】
利用三角函數的輔助角公式進行化簡,求出函數的解析式,結合三角函數的單調性進行求解即可.【詳解】∵,則函數的最大值為2,周期,的最大值與最小正周期相同,,得,則,當時,,則當時,得,即函數在,上的單調遞增區間為,故答案為:.【點睛】本題考查三角函數的性質、單調區間,利用輔助角公式求出函數的解析式是解決本題的關鍵,同時要注意單調區間為定義域的一個子區間.15、【解析】
直接由復數代數形式的乘法運算化簡,結合已知條件即可求出實數的值.【詳解】解:的實部與虛部相等,所以,計算得出.故答案為:【點睛】本題考查復數的乘法運算和復數的概念,屬于基礎題.16、7【解析】
表示初值S=1,i=1,分三次循環計算得S=10>0,輸出i=7.【詳解】S=1,i=1第一次循環:S=1+1=2,i=1+2=3;第二次循環:S=2+3=5,i=3+2=5;第三次循環:S=5+5=10,i=5+2=7;S=10>9,循環結束,輸出:i=7.故答案為:7【點睛】本題考查在程序語句的背景下已知輸入的循環結構求輸出值問題,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)答案見解析(2)【解析】
(1)假設函數的圖象與x軸相切于,根據相切可得方程組,看方程是否有解即可;(2)求出的導數,設(),根據函數的單調性及在處取得極大值求出a的范圍即可.【詳解】(1)函數的圖象不能與x軸相切,理由若下:.假設函數的圖象與x軸相切于則即顯然,,代入中得,無實數解.故函數的圖象不能與x軸相切.(2)(),,設(),恒大于零.在上單調遞增.又,,,∴存在唯一,使,且時,時,①當時,恒成立,在單調遞增,無極值,不合題意.②當時,可得當時,,當時,.所以在內單調遞減,在內單調遞增,所以在處取得極小值,不合題意.③當時,可得當時,,當時,.所以在內單調遞增,在內單調遞減,所以在處取得極大值,符合題意.此時由得即,綜上可知,實數a的取值范圍為.【點睛】本題考查了函數的單調性,最值問題,考查導數的應用以及分類討論思想,轉化思想,屬于難題.18、(1)(2)定值為0.【解析】
(1)根據直線方程求焦點坐標,即得c,再根據離心率得,(2)先設直線方程以及各點坐標,化簡,再聯立直線方程與橢圓方程,利用韋達定理代入化簡得結果.【詳解】(1)因為直線過橢圓的右焦點,所以,因為離心率為,所以,(2),設直線,則因此由得,所以,因此即【點睛】本題考查橢圓方程以及直線與橢圓位置關系,考查綜合分析求解能力,屬中檔題.19、見解析【解析】
(1)設,則點到軸的距離為,因為圓被軸截得的弦長為,所以,又,所以,化簡可得,所以曲線的標準方程為.(2)設,,因為直線的斜率,所以可設直線的方程為,由及,消去可得,所以,,所以.設線段的中點為,點的縱坐標為,則,,所以直線的斜率為,所以,所以,所以.易得圓心到直線的距離,由圓經過點,可得,所以,整理可得,解得或,所以或,又,所以.20、(1)證明見解析(2)【解析】
(1)首先證明,,,∴平面.即可得到平面,.(2)以為坐標原點,,,所在的直線分別為軸、軸、軸建立空間直角坐標系,分別求出平面和平面的法向量,帶入公式求解即可.【詳解】(1)∵平面,平面,∴.又∵四邊形是正方形,∴.∵,∴平面.∵平面,∴.又∵,為的中點,∴.∵,∴平面.∵平面,∴.(2)∵平面,,∴平面.以為坐標原點,,,所在的直線分別為軸、軸、軸建立空間直角坐標系.如圖所示:則,,,.∴,,.設為平面的法向量,則,得,令,則.由題意知為平面的一個法向量,∴,∴平面與平面所成角的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 石嘴山工貿職業技術學院《水工程施工》2023-2024學年第一學期期末試卷
- 西安財經大學《系統理論數學基礎》2023-2024學年第二學期期末試卷
- 《騰訊戰略投資》課件
- 2025海鮮供貨合同
- 2025至2031年中國化纖紡織原料行業投資前景及策略咨詢研究報告
- 2025至2030年中國高爾夫發球桿數據監測研究報告
- 2025至2030年中國鋼槽輪數據監測研究報告
- 2025至2030年中國線纜外護層開剝刀數據監測研究報告
- 2025至2030年中國糖果柜數據監測研究報告
- 罩棚吊頂噴漆施工方案
- GB/T 31539-2015結構用纖維增強復合材料拉擠型材
- 機械制圖國家標準
- 汽車吊起重吊裝方案-
- 陰囊疾病超聲診斷課件
- 最新體檢信息系統課件
- 西師版三年級數學(下冊)第一單元試題
- 信用修復授權委托書
- 危大工程驗收記錄表(腳手架工程)
- X射線光電子能譜-avantage課件
- GJB9001C-2017質量管理體系檢查內容的內部審核檢查表【含檢查內容】
- 面試人員測評打分表
評論
0/150
提交評論