北京一零一中學2024屆高三下學期期末考試數學試題(A卷)_第1頁
北京一零一中學2024屆高三下學期期末考試數學試題(A卷)_第2頁
北京一零一中學2024屆高三下學期期末考試數學試題(A卷)_第3頁
北京一零一中學2024屆高三下學期期末考試數學試題(A卷)_第4頁
北京一零一中學2024屆高三下學期期末考試數學試題(A卷)_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北京一零一中學2024屆高三下學期期末考試數學試題(A卷)注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知展開式的二項式系數和與展開式中常數項相等,則項系數為()A.10 B.32 C.40 D.802.記等差數列的公差為,前項和為.若,,則()A. B. C. D.3.在復平面內,復數對應的點的坐標為()A. B. C. D.4.已知函數,若函數有三個零點,則實數的取值范圍是()A. B. C. D.5.已知函數f(x)=sin2x+sin2(x),則f(x)的最小值為()A. B. C. D.6.設,是兩條不同的直線,,是兩個不同的平面,下列命題中正確的是()A.若,,,則B.若,,,則C.若,,,則D.若,,,則7.過點的直線與曲線交于兩點,若,則直線的斜率為()A. B.C.或 D.或8.某四棱錐的三視圖如圖所示,記S為此棱錐所有棱的長度的集合,則()A.B.C.D.9.已知x,,則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件10.“且”是“”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既不充分也不必要條件11.四人并排坐在連號的四個座位上,其中與不相鄰的所有不同的坐法種數是()A.12 B.16 C.20 D.812.設,則關于的方程所表示的曲線是()A.長軸在軸上的橢圓 B.長軸在軸上的橢圓C.實軸在軸上的雙曲線 D.實軸在軸上的雙曲線二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的離心率是,若以為圓心且與橢圓有公共點的圓的最大半徑為,此時橢圓的方程是____.14.直線xsinα+y+2=0的傾斜角的取值范圍是________________.15.若直線與直線交于點,則長度的最大值為____.16.已知三棱錐的四個頂點都在球的球面上,,則球的表面積為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的長軸長為,離心率(1)求橢圓的方程;(2)設分別為橢圓與軸正半軸和軸正半軸的交點,是橢圓上在第一象限的一點,直線與軸交于點,直線與軸交于點,問與面積之差是否為定值?說明理由.18.(12分)已知點、分別在軸、軸上運動,,.(1)求點的軌跡的方程;(2)過點且斜率存在的直線與曲線交于、兩點,,求的取值范圍.19.(12分)已知函數.(Ⅰ)當時,求不等式的解集;(Ⅱ)若不等式對任意實數恒成立,求實數的取值范圍.20.(12分)已知在平面四邊形中,的面積為.(1)求的長;(2)已知,為銳角,求.21.(12分)已知函數.(1)求不等式的解集;(2)若函數的最大值為,且,求的最小值.22.(10分)已知函數.當時,求不等式的解集;,,求a的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據二項式定理通項公式可得常數項,然后二項式系數和,可得,最后依據,可得結果.【詳解】由題可知:當時,常數項為又展開式的二項式系數和為由所以當時,所以項系數為故選:D【點睛】本題考查二項式定理通項公式,熟悉公式,細心計算,屬基礎題.2、C【解析】

由,和,可求得,從而求得和,再驗證選項.【詳解】因為,,所以解得,所以,所以,,,故選:C.【點睛】本題考查等差數列的通項公式、前項和公式,還考查運算求解能力,屬于中檔題.3、C【解析】

利用復數的運算法則、幾何意義即可得出.【詳解】解:復數i(2+i)=2i﹣1對應的點的坐標為(﹣1,2),故選:C【點睛】本題考查了復數的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎題.4、B【解析】

根據所給函數解析式,畫出函數圖像.結合圖像,分段討論函數的零點情況:易知為的一個零點;對于當時,由代入解析式解方程可求得零點,結合即可求得的范圍;對于當時,結合導函數,結合導數的幾何意義即可判斷的范圍.綜合后可得的范圍.【詳解】根據題意,畫出函數圖像如下圖所示:函數的零點,即.由圖像可知,,所以是的一個零點,當時,,若,則,即,所以,解得;當時,,則,且若在時有一個零點,則,綜上可得,故選:B.【點睛】本題考查了函數圖像的畫法,函數零點定義及應用,根據零點個數求參數的取值范圍,導數的幾何意義應用,屬于中檔題.5、A【解析】

先通過降冪公式和輔助角法將函數轉化為,再求最值.【詳解】已知函數f(x)=sin2x+sin2(x),=,=,因為,所以f(x)的最小值為.故選:A【點睛】本題主要考查倍角公式及兩角和與差的三角函數的逆用,還考查了運算求解的能力,屬于中檔題.6、D【解析】試題分析:,,故選D.考點:點線面的位置關系.7、A【解析】

利用切割線定理求得,利用勾股定理求得圓心到弦的距離,從而求得,結合,求得直線的傾斜角為,進而求得的斜率.【詳解】曲線為圓的上半部分,圓心為,半徑為.設與曲線相切于點,則所以到弦的距離為,,所以,由于,所以直線的傾斜角為,斜率為.故選:A【點睛】本小題主要考查直線和圓的位置關系,考查數形結合的數學思想方法,屬于中檔題.8、D【解析】

如圖所示:在邊長為的正方體中,四棱錐滿足條件,故,得到答案.【詳解】如圖所示:在邊長為的正方體中,四棱錐滿足條件.故,,.故,故,.故選:.【點睛】本題考查了三視圖,元素和集合的關系,意在考查學生的空間想象能力和計算能力.9、D【解析】

,不能得到,成立也不能推出,即可得到答案.【詳解】因為x,,當時,不妨取,,故時,不成立,當時,不妨取,則不成立,綜上可知,“”是“”的既不充分也不必要條件,故選:D【點睛】本題主要考查了充分條件,必要條件的判定,屬于容易題.10、A【解析】

畫出“,,,所表示的平面區域,即可進行判斷.【詳解】如圖,“且”表示的區域是如圖所示的正方形,記為集合P,“”表示的區域是單位圓及其內部,記為集合Q,顯然是的真子集,所以答案是充分非必要條件,故選:.【點睛】本題考查了不等式表示的平面區域問題,考查命題的充分條件和必要條件的判斷,難度較易.11、A【解析】

先將除A,B以外的兩人先排,再將A,B在3個空位置里進行插空,再相乘得答案.【詳解】先將除A,B以外的兩人先排,有種;再將A,B在3個空位置里進行插空,有種,所以共有種.故選:A【點睛】本題考查排列中不相鄰問題,常用插空法,屬于基礎題.12、C【解析】

根據條件,方程.即,結合雙曲線的標準方程的特征判斷曲線的類型.【詳解】解:∵k>1,∴1+k>0,k2-1>0,

方程,即,表示實軸在y軸上的雙曲線,

故選C.【點睛】本題考查雙曲線的標準方程的特征,依據條件把已知的曲線方程化為是關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據題意設為橢圓上任意一點,表達出,再根據二次函數的對稱軸與求解的關系分析最值求解即可.【詳解】因為橢圓的離心率是,,所以,故橢圓方程為.因為以為圓心且與橢圓有公共點的圓的最大半徑為,所以橢圓上的點到點的距離的最大值為.設為橢圓上任意一點,則.所以因為的對稱軸為.(i)當時,在上單調遞增,在上單調遞減.此時,解得.(ii)當時,在上單調遞減.此時,解得舍去.綜上,橢圓方程為.故答案為:【點睛】本題主要考查了橢圓上的點到定點的距離最值問題,需要根據題意設橢圓上的點,再求出距離,根據二次函數的對稱軸與區間的關系分析最值的取值點分類討論求解.屬于中檔題.14、【解析】因為sinα∈[-1,1],所以-sinα∈[-1,1],所以已知直線的斜率范圍為[-1,1],由傾斜角與斜率關系得傾斜角范圍是.答案:15、【解析】

根據題意可知,直線與直線分別過定點,且這兩條直線互相垂直,由此可知,其交點在以為直徑的圓上,結合圖形求出線段的最大值即可.【詳解】由題可知,直線可化為,所以其過定點,直線可化為,所以其過定點,且滿足,所以直線與直線互相垂直,其交點在以為直徑的圓上,作圖如下:結合圖形可知,線段的最大值為,因為為線段的中點,所以由中點坐標公式可得,所以線段的最大值為.故答案為:【點睛】本題考查過交點的直線系方程、動點的軌跡問題及點與圓的位置關系;考查數形結合思想和運算求解能力;根據圓的定義得到交點在以為直徑的圓上是求解本題的關鍵;屬于中檔題.16、【解析】

如圖所示,將三棱錐補成長方體,球為長方體的外接球,長、寬、高分別為,計算得到,得到答案.【詳解】如圖所示,將三棱錐補成長方體,球為長方體的外接球,長、寬、高分別為,則,所以,所以球的半徑,則球的表面積為.故答案為:.【點睛】本題考查了三棱錐的外接球問題,意在考查學生的計算能力和空間想象能力,將三棱錐補成長方體是解題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)是定值,詳見解析【解析】

(1)根據長軸長為,離心率,則有求解.(2)設,則,直線,令得,,則,直線,令,得,則,再根據求解.【詳解】(1)依題意得,解得,則橢圓的方程.(2)設,則,直線,令得,,則,直線,令,得,則,.【點睛】本題主要考查橢圓的方程及直線與橢圓的位置關系,還考查了平面幾何知識和運算求解的能力,屬于中檔題.18、(1)(2)【解析】

(1)設坐標后根據向量的坐標運算即可得到軌跡方程.(2)聯立直線和橢圓方程,用坐標表示出,得到,所以,代入韋達定理即可求解.【詳解】(1)設,,則,設,由得.又由于,化簡得的軌跡的方程為.(2)設直線的方程為,與的方程聯立,消去得,,設,,則,,由已知,,則,故直線.,令,則,由于,,.所以,的取值范圍為.【點睛】此題考查軌跡問題,橢圓和直線相交,注意坐標表示向量進行轉化的處理技巧,屬于較難題目.19、(Ⅰ);(Ⅱ).【解析】試題分析:(Ⅰ)分三種情況討論,分別求解不等式組,然后求并集即可得不等式的解集;(Ⅱ)根據絕對值不等式的性質可得,不等式對任意實數恒成立,等價于,解不等式即可求的取值范圍.試題解析:(Ⅰ)當時,即,①當時,得,所以;②當時,得,即,所以;③當時,得成立,所以.故不等式的解集為.(Ⅱ)因為,由題意得,則,解得,故的取值范圍是.20、(1);(2)4.【解析】

(1)利用三角形的面積公式求得,利用余弦定理求得.(2)利用余弦定理求得,由此求得,進而求得,利用同角三角函數的基本關系式求得.【詳解】(1)在中,由面積公式:在中,由余弦定理可得:(2)在中,由余弦定理可得:在中,由正弦定理可得:,為銳角.【點睛】本小題主要考查正弦定理、余弦定理解三角形,考查三角形面積公式,考查同角三角函數的基本關系式,屬于中檔題.21、(1)(2)【解析】

(1)化簡得到,分類解不等式得到答案.(2)的最大值,,利用均值不等式計算得到答案.【詳解】(1)因為,故或或解得或,故不等式的解集為.(2)畫出函數圖像,根據圖像可知的最大值.因為,所以,當且僅當時,等號成立,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論