




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆吉林省吉林市“三校”高三數學第一學期期末考試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,這是某校高三年級甲、乙兩班在上學期的5次數學測試的班級平均分的莖葉圖,則下列說法不正確的是()A.甲班的數學成績平均分的平均水平高于乙班B.甲班的數學成績的平均分比乙班穩定C.甲班的數學成績平均分的中位數高于乙班D.甲、乙兩班這5次數學測試的總平均分是1032.函數的最大值為,最小正周期為,則有序數對為()A. B. C. D.3.函數的部分圖象如圖所示,已知,函數的圖象可由圖象向右平移個單位長度而得到,則函數的解析式為()A. B.C. D.4.在中,是的中點,,點在上且滿足,則等于()A. B. C. D.5.已知集合,,則()A. B.C.或 D.6.若函數在處取得極值2,則()A.-3 B.3 C.-2 D.27.已知拋物線:的焦點為,過點的直線交拋物線于,兩點,其中點在第一象限,若弦的長為,則()A.2或 B.3或 C.4或 D.5或8.已知數列中,,若對于任意的,不等式恒成立,則實數的取值范圍為()A. B.C. D.9.下列函數中,既是偶函數又在區間上單調遞增的是()A. B. C. D.10.設拋物線的焦點為F,拋物線C與圓交于M,N兩點,若,則的面積為()A. B. C. D.11.已知集合,將集合的所有元素從小到大一次排列構成一個新數列,則()A.1194 B.1695 C.311 D.109512.已知某幾何體的三視圖如右圖所示,則該幾何體的體積為()A.3 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖是一個算法偽代碼,則輸出的的值為_______________.14.已知拋物線的焦點為,斜率為2的直線與的交點為,若,則直線的方程為___________.15.在某批次的某種燈泡中,隨機抽取200個樣品.并對其壽命進行追蹤調查,將結果列成頻率分布表如下:壽命(天)頻數頻率40600.30.4200.1合計2001某人從燈泡樣品中隨機地購買了個,如果這個燈泡的壽命情況恰好與按四個組分層抽樣所得的結果相同,則的最小值為______.16.在中,,點是邊的中點,則__________,________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)若數列前n項和為,且滿足(t為常數,且)(1)求數列的通項公式:(2)設,且數列為等比數列,令,.求證:.18.(12分)在直角坐標系中,曲線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的直角坐標方程;(2)若點在曲線上,點在曲線上,求的最小值及此時點的坐標.19.(12分)已知橢圓,點為半圓上一動點,若過作橢圓的兩切線分別交軸于、兩點.(1)求證:;(2)當時,求的取值范圍.20.(12分)如圖,在棱長為的正方形中,,分別為,邊上的中點,現以為折痕將點旋轉至點的位置,使得為直二面角.(1)證明:;(2)求與面所成角的正弦值.21.(12分)在如圖所示的多面體中,四邊形是矩形,梯形為直角梯形,平面平面,且,,.(1)求證:平面.(2)求二面角的大小.22.(10分)已知的內角的對邊分別為,且滿足.(1)求角的大小;(2)若的面積為,求的周長的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
計算兩班的平均值,中位數,方差得到正確,兩班人數不知道,所以兩班的總平均分無法計算,錯誤,得到答案.【詳解】由題意可得甲班的平均分是104,中位數是103,方差是26.4;乙班的平均分是102,中位數是101,方差是37.6,則A,B,C正確.因為甲、乙兩班的人數不知道,所以兩班的總平均分無法計算,故D錯誤.故選:.【點睛】本題考查了莖葉圖,平均值,中位數,方差,意在考查學生的計算能力和應用能力.2、B【解析】函數(為輔助角)∴函數的最大值為,最小正周期為故選B3、A【解析】
由圖根據三角函數圖像的對稱性可得,利用周期公式可得,再根據圖像過,即可求出,再利用三角函數的平移變換即可求解.【詳解】由圖像可知,即,所以,解得,又,所以,由,所以或,又,所以,,所以,,即,因為函數的圖象由圖象向右平移個單位長度而得到,所以.故選:A【點睛】本題考查了由圖像求三角函數的解析式、三角函數圖像的平移伸縮變換,需掌握三角形函數的平移伸縮變換原則,屬于基礎題.4、B【解析】
由M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足可得:P是三角形ABC的重心,根據重心的性質,即可求解.【詳解】解:∵M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足∴P是三角形ABC的重心∴又∵AM=1∴∴故選B.【點睛】判斷P點是否是三角形的重心有如下幾種辦法:①定義:三條中線的交點.②性質:或取得最小值③坐標法:P點坐標是三個頂點坐標的平均數.5、D【解析】
首先求出集合,再根據補集的定義計算可得;【詳解】解:∵,解得∴,∴.故選:D【點睛】本題考查補集的概念及運算,一元二次不等式的解法,屬于基礎題.6、A【解析】
對函數求導,可得,即可求出,進而可求出答案.【詳解】因為,所以,則,解得,則.故選:A.【點睛】本題考查了函數的導數與極值,考查了學生的運算求解能力,屬于基礎題.7、C【解析】
先根據弦長求出直線的斜率,再利用拋物線定義可求出.【詳解】設直線的傾斜角為,則,所以,,即,所以直線的方程為.當直線的方程為,聯立,解得和,所以;同理,當直線的方程為.,綜上,或.選C.【點睛】本題主要考查直線和拋物線的位置關系,弦長問題一般是利用弦長公式來處理.出現了到焦點的距離時,一般考慮拋物線的定義.8、B【解析】
先根據題意,對原式進行化簡可得,然后利用累加法求得,然后不等式恒成立轉化為恒成立,再利用函數性質解不等式即可得出答案.【詳解】由題,即由累加法可得:即對于任意的,不等式恒成立即令可得且即可得或故選B【點睛】本題主要考查了數列的通項的求法以及函數的性質的運用,屬于綜合性較強的題目,解題的關鍵是能夠由遞推數列求出通項公式和后面的轉化函數,屬于難題.9、C【解析】
結合基本初等函數的奇偶性及單調性,結合各選項進行判斷即可.【詳解】A:為非奇非偶函數,不符合題意;B:在上不單調,不符合題意;C:為偶函數,且在上單調遞增,符合題意;D:為非奇非偶函數,不符合題意.故選:C.【點睛】本小題主要考查函數的單調性和奇偶性,屬于基礎題.10、B【解析】
由圓過原點,知中有一點與原點重合,作出圖形,由,,得,從而直線傾斜角為,寫出點坐標,代入拋物線方程求出參數,可得點坐標,從而得三角形面積.【詳解】由題意圓過原點,所以原點是圓與拋物線的一個交點,不妨設為,如圖,由于,,∴,∴,,∴點坐標為,代入拋物線方程得,,∴,.故選:B.【點睛】本題考查拋物線與圓相交問題,解題關鍵是發現原點是其中一個交點,從而是等腰直角三角形,于是可得點坐標,問題可解,如果僅從方程組角度研究兩曲線交點,恐怕難度會大大增加,甚至沒法求解.11、D【解析】
確定中前35項里兩個數列中的項數,數列中第35項為70,這時可通過比較確定中有多少項可以插入這35項里面即可得,然后可求和.【詳解】時,,所以數列的前35項和中,有三項3,9,27,有32項,所以.故選:D.【點睛】本題考查數列分組求和,掌握等差數列和等比數列前項和公式是解題基礎.解題關鍵是確定數列的前35項中有多少項是中的,又有多少項是中的.12、B【解析】由三視圖知:幾何體是直三棱柱消去一個三棱錐,如圖:
直三棱柱的體積為,消去的三棱錐的體積為,
∴幾何體的體積,故選B.點睛:本題考查了由三視圖求幾何體的體積,根據三視圖判斷幾何體的形狀及相關幾何量的數據是解答此類問題的關鍵;幾何體是直三棱柱消去一個三棱錐,結合直觀圖分別求出直三棱柱的體積和消去的三棱錐的體積,相減可得幾何體的體積.二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】
執行循環結構流程圖,即得結果.【詳解】執行循環結構流程圖得,結束循環,輸出.【點睛】本題考查循環結構流程圖,考查基本分析與運算能力,屬基礎題.14、【解析】
設直線l的方程為,,聯立直線l與拋物線C的方程,得到A,B點橫坐標的關系式,代入到中,解出t的值,即可求得直線l的方程【詳解】設直線.由題設得,故,由題設可得.
由可得,
則,從而,得,所以l的方程為,故答案為:【點睛】本題主要考查了直線的方程,拋物線的定義,拋物線的簡單幾何性質,直線與拋物線的位置關系,屬于中檔題.15、10【解析】
先求出a,b,根據分層抽樣的比例引入正整數k表示n,從而得出的最小值.【詳解】由題意得,a=0.2,b=80,由表可知,燈泡樣品第一組有40個,第二組有60個,第三組有80個,第四組有20個,所以四個組的比例為2:3:4:1,所以按分層抽樣法,購買的燈泡數為n=2k+3k+4k+k=10k(),所以的最小值為10.【點睛】本題考查分層抽樣基本原理的應用,涉及抽樣比、總體數量、每層樣本數量的計算,屬于基礎題.16、2【解析】
根據正弦定理直接求出,利用三角形的邊表示向量,然后利用向量的數量積求解即可.【詳解】中,,,可得因為點是邊的中點,所以故答案為:;.【點睛】本題主要考查了三角形的解法,向量的數量積的應用,考查計算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)詳見解析【解析】
(1)利用可得的遞推關系,從而可求其通項.(2)由為等比數列可得,從而可得的通項,利用錯位相減法可得的前項和,利用不等式的性質可證.【詳解】(1)由題意,得:(t為常數,且),當時,得,得.由,故,,故.(2)由,由為等比數列可知:,又,故,化簡得到,所以或(舍).所以,,則.設的前n項和為.則,相減可得【點睛】數列的通項與前項和的關系式,我們常利用這個關系式實現與之間的相互轉化.數列求和關鍵看通項的結構形式,如果通項是等差數列與等比數列的和,則用分組求和法;如果通項是等差數列與等比數列的乘積,則用錯位相減法;如果通項可以拆成一個數列連續兩項的差,那么用裂項相消法;如果通項的符號有規律的出現,則用并項求和法.18、(1);(2)最小值為,此時【解析】
(1)消去曲線參數方程的參數,求得曲線的普通方程.利用極坐標和直角坐標相互轉化公式,求得曲線的直角坐標方程.(2)設出的坐標,結合點到直線的距離公式以及三角函數最值的求法,求得的最小值及此時點的坐標.【詳解】(1)消去得,曲線的普通方程是:;把,代入得,曲線的直角坐標方程是(2)設,的最小值就是點到直線的最小距離.設在時,,是最小值,此時,所以,所求最小值為,此時【點睛】本小題主要考查參數方程化為普通方程,考查極坐標方程轉化為直角坐標方程,考查利用圓錐曲線的參數求最值,屬于中檔題.19、(1)見解析;(2).【解析】
(1)分兩種情況討論:①兩切線、中有一條切線斜率不存在時,求出兩切線的方程,驗證結論成立;②兩切線、的斜率都存在,可設切線的方程為,將該直線的方程與橢圓的方程聯立,由可得出關于的二次方程,利用韋達定理得出兩切線的斜率之積為,進而可得出結論;(2)求出點、的坐標,利用兩點間的距離公式結合韋達定理得出,換元,可得出,利用二次函數的基本性質可求得的取值范圍.【詳解】(1)由于點在半圓上,則.①當兩切線、中有一條切線斜率不存在時,可求得兩切線方程為,或,,此時;②當兩切線、的斜率都存在時,設切線的方程為(、的斜率分別為、),,,,.綜上所述,;(2)根據題意得、,,令,則,所以,當時,,當時,.因此,的取值范圍是.【點睛】本題考查橢圓兩切線垂直的證明,同時也考查了弦長的取值范圍的計算,考查計算能力,屬于中等題.20、(1)證明見詳解;(2)【解析】
(1)在折疊前的正方形ABCD中,作出對角線AC,BD,由正方形性質知,又//,則于點H,則由直二面角可知面,故.又,則面,故命題得證;(2)作出線面角,在直角三角形中求解該角的正弦值.【詳解】解:(1)證明:在正方形中,連結交于.因為//,故可得,即又旋轉不改變上述垂直關系,且平面,面,又面,所以(2)因為為直二面角,故平面平面,又其交線為,且平面,故可得底面,連結,則即為與面所成角,連結交于,在中,,在中,.所以與面所成角的正弦值為.【點睛】本題考查了線面垂直的證明與性質,利用定義求線面角,屬于中檔題.21、(1)見解析;(2)【解析】
(1)根據面面垂直性質及線面垂直性質,可證明;由所給線段關系,結合勾股定理逆定理,可證明,進而由線面垂直的判定定理證明平面.(2)建立空間直角坐標系,寫出各個點的坐標,并求得平面和平面的法向量,由空間向量法求得兩個平面夾角的余弦值,結合圖形即可求得二面角的大小.【詳
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小區物業管理方案
- 學生使用大功率電器檢討書
- 學校陽光體育活動實施方案
- 醫療AI在手術輔助中的倫理問題
- 五年中考模擬試卷及答案
- 五年級數試卷及答案
- 辦公樓宇智能設備集成監理方案
- 2021年6月初級銀行從業資格考試《風險管理》真題匯編(考生回憶版)
- 《心衰患者護理查房》課件
- 《IT專業人士職業發展》課件
- 廣東高考:數學必考知識點總結
- 宗教政策法規知識課件
- 七下生物考試試卷及答案
- 財產險試題庫及答案
- 湖南新高考教學教研聯盟暨長郡二十校聯盟2025屆高三年級第二次聯考物理試題及答案
- 金店裝修施工方案
- 建筑勞務公司人事管理制度
- 第二套全國中小學校園集體舞圖解
- 工具式懸挑防護棚安全專項施工方案
- 香港主板上市規則_第十四章A:關連交易
- 中醫體質辨識量表33-簡版
評論
0/150
提交評論