2025屆安徽省六安市舒城中學仁英班數學高二上期末聯考模擬試題含解析_第1頁
2025屆安徽省六安市舒城中學仁英班數學高二上期末聯考模擬試題含解析_第2頁
2025屆安徽省六安市舒城中學仁英班數學高二上期末聯考模擬試題含解析_第3頁
2025屆安徽省六安市舒城中學仁英班數學高二上期末聯考模擬試題含解析_第4頁
2025屆安徽省六安市舒城中學仁英班數學高二上期末聯考模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆安徽省六安市舒城中學仁英班數學高二上期末聯考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數的導函數為,對任意,都有成立,若,則滿足不等式的的取值范圍是()A. B.C D.2.已知一組數據為:2,4,6,8,這4個數的方差為()A.4 B.5C.6 D.73.在等差數列{an}中,a1=2,a5=3a3,則a3等于()A.-2 B.0C.3 D.64.直線的傾斜角的大小為()A. B.C. D.5.已知數列滿足,,記數列的前n項和為,若對于任意,不等式恒成立,則實數k的取值范圍為()A. B.C. D.6.設函數,則曲線在點處的切線方程為()A. B.C. D.7.雙曲線的漸近線方程為A. B.C. D.8.定義運算:.已知,都是銳角,且,,則()A. B.C. D.9.下面四個說法中,正確說法的個數為()(1)如果兩個平面有三個公共點,那么這兩個平面重合;(2)兩條直線可以確定一個平面;(3)若,,,則;(4)空間中,兩兩相交的三條直線在同一平面內.A.1 B.2C.3 D.410.已知函數在上可導,且,則與的大小關系為A. B.C. D.不確定11.若圓與圓相切,則實數a的值為()A.或0 B.0C. D.或12.酒駕是嚴重危害交通安全的違法行為.根據國家有關規定:100血液中酒精含量在20~80之間為酒后駕車,80及以上為醉酒駕車.假設某駕駛員喝了一定量的酒后,其血液中的酒精含量上升到了1.2,且在停止喝酒以后,他血液中的酒精含量會以每小時20%的速度減少,若他想要在不違法的情況下駕駛汽車,則至少需經過的小時數約為()(參考數據:,)A.6 B.7C.8 D.9二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,則的導函數______.14.已知=(3,a+b,a﹣b)(a,b∈R)是直線l的方向向量,=(1,2,3)是平面α的法向量,若l⊥α,則5a+b=__15.命題“,”是真命題,則的取值范圍是________16.若直線:x-2y+1=0與直線:2x+my-1=0相互垂直,則實數m的值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,,為的中點,連接.(1)求證:平面;(2)求平面與平面的夾角的余弦值.18.(12分)已知數列的前項和為,且.數列是等比數列,,(1)求,的通項公式;(2)求數列的前項和19.(12分)近年來某村制作的手工藝品在國內外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴把質量關,合作社對村民制作的每件手工藝品都請3位行家進行質量把關,質量把關程序如下:(ⅰ)若一件手工藝品3位行家都認為質量過關,則該手工藝品質量為A級;(ⅱ)若3位行家中僅有1位行家認為質量不過關,再由另外2位行家進行第二次質量把關.若第二次質量把關這2位行家都認為質量過關,則該手工藝品質量為B級;若第二次質量把關這2位行家中有1位或2位認為質量不過關,則該手工藝品質量為C級;(ⅲ)若3位行家中有2位或3位行家認為質量不過關,則該手工藝品質量為D級.已知每一次質量把關中一件手工藝品被1位行家認為質量不過關的概率為,且各手工藝品質量是否過關相互獨立(1)求一件手工藝品質量為B級的概率;(2)求81件手工藝品中,質量為C級的手工藝品件數的方差;(3)求10件手工藝品中,質量為D級的手工藝品最有可能是多少件?20.(12分)已知圓M經過原點和點,且它的圓心M在直線上.(1)求圓M的方程;(2)若點D為圓M上的動點,定點,求線段CD的中點P的軌跡方程.21.(12分)已知函數f(x)=ax-2lnx(1)討論f(x)的單調性;(2)設函數g(x)=x-2,若存在,使得f(x)≤g(x),求a的取值范圍22.(10分)已知圓的圓心在直線上,且圓經過點與點.(1)求圓的方程;(2)過點作圓的切線,求切線所在的直線的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】構造函數,利用導數分析函數的單調性,將所求不等式變形為,結合函數的單調性即可得解.【詳解】對任意,都有成立,即令,則,所以函數在上單調遞增不等式即,即因為,所以所以,,解得,所以不等式的解集為故選:C.2、B【解析】根據數據的平均數和方差的計算公式,準確計算,即可求解.【詳解】由平均數的計算公式,可得,所以這4個數的方差為故選:B.3、A【解析】利用已知條件求得,由此求得.【詳解】a1=2,a5=3a3,得a1+4d=3(a1+2d),即d=-a1=-2,所以a3=a1+2d=-2.故選:A.4、B【解析】由直線方程,可知直線的斜率,設直線的傾斜角為,則,又,所以,故選5、C【解析】由已知得,根據等比數列的定義得數列是首項為,公比為的等比數列,由此求得,然后利用裂項求和法求得,進而求得的取值范圍.【詳解】解:依題意,當時,,則,所以數列是首項為,公比為的等比數列,,即,所以,所以,所以的取值范圍是.故選:C.6、A【解析】利用導數的幾何意義求解即可【詳解】由,得,所以切線的斜率為,所以切線方程為,即,故選:A7、A【解析】根據雙曲線的漸近線方程知,,故選A.8、B【解析】,只需求出與的正、余弦值即可,用平方關系時注意角的范圍.【詳解】解:因為,都是銳角,所以,,因為,所以,即,,所以,,因為,所有,故選:B.【點睛】信息給予題,已知三角函數值求三角函數值,考查根據三角函數的恒等變換求值,基礎題.9、A【解析】如果兩個平面有三個公共點,那么這兩個平面重合或者是相交,即可判斷;利用兩條異面直線不能確定一個平面即可判斷;利用平面的基本性質中的公理判斷即可;若兩兩相交的三條直線相交于同一點,則相交于同一點的三直線不一定在同一平面內(如棱錐的3條側棱),即可判斷.【詳解】如果兩個平面有三個公共點,那么這兩個平面重合或者是相交,故(1)不正確;兩條異面直線不能確定一個平面,故(2)不正確;利用平面的基本性質中的公理判斷(3)正確;空間中,若兩兩相交的三條直線相交于同一點,則相交于同一點的三直線不一定在同一平面內(如棱錐的3條側棱),故(4)不正確,綜上所述只有一個說法是正確的,故選:A【點睛】本題主要考查了空間中點,線,面的位置關系.屬于較易題.10、B【解析】由,所以.11、D【解析】根據給定條件求出兩圓圓心距,再借助兩圓相切的充要條件列式計算作答.【詳解】圓的圓心,半徑,圓的圓心,半徑,而,即點不可能在圓內,則兩圓必外切,于是得,即,解得,所以實數a的值為或.故選:D12、C【解析】根據題意列出不等式,利用指對數冪的互化和對數的運算公式即可解出不等式.【詳解】設該駕駛員至少需經過x個小時才能駕駛汽車,則,所以,則,所以該駕駛員至少需經過約8個小時才能駕駛汽車.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用基本初等函數的求導公式及積的求導法則計算作答.【詳解】函數定義域為,則,所以.故答案為:14、36【解析】根據方向向量和平面法向量的定義即可得出,然后即可得出,然后求出a,b的值,進而求出5a+b的值【詳解】∵l⊥α,∴,∴,解得,∴故答案為:3615、【解析】依題意可得,是真命題,參變分離得到在上有解,再利用構造函數利用函數的單調性計算可得.【詳解】,等價于在上有解設,,則在上單調遞減,在上單調遞增,又,,所以,即故答案為:16、1【解析】由兩條直線垂直可知,進而解得答案即可.【詳解】因為兩條直線垂直,所以.故答案為:1.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明過程見解析;(2).【解析】(1)根據平行四邊形的判定定理和性質,結合線面垂直的判定定理進行證明即可;(2)利用空間向量夾角公式進行求解即可.【小問1詳解】因為為的中點,所以,而,所以四邊形是平行四邊形,因此,因為,,為的中點,所以,,而,因為,所以,而平面,所以平面;【小問2詳解】根據(1),建立如圖所示的空間直角坐標系,,于是有:,則平面的法向量為:,設平面的法向量為:,所以,設平面與平面的夾角為,所以.18、(1),(2)【解析】(1)利用求出通項公式,根據已知求出公比即可得出的通項公式;(2)利用錯位相減法可求解.【小問1詳解】因為數列的前項和為,且,當時,,當時,,滿足,所以,設等比數列的公比為,因為,,所以,解得,所以;【小問2詳解】因為,,則,兩式相減得,所以.19、(1)(2)(3)2件【解析】(1)根據相互獨立事件的概率公式計算可得;(2)首先求出一件手工藝品質量為C級的概率,設81件手工藝品中質量為C級的手工藝品是X件,則,再根據二項分布的方差公式計算可得;(3)首先求出一件手工藝品質量為D級的概率,設10件手工藝品中質量為D級的手工藝品是ξ件,則,根據二項分布的概率公式求出的最大值,即可得解;【小問1詳解】解:一件手工藝品質量為B級的概率為【小問2詳解】解:一件手工藝品質量為C級的概率為,設81件手工藝品中質量為C級的手工藝品是X件,則,所以【小問3詳解】解:一件手工藝品質量為D級的概率為,設10件手工藝品中質量為D級的手工藝品是ξ件,則,則,由解得,所以當時,,即,由解得,所以當時,,所以當時,最大,即10件手工藝品中質量為D級的最有可能是2件20、(1).(2).【解析】(1)設圓M的方程為,由已知條件建立方程組,求解即可;(2)設,,依題意得.代入圓M的方程可得點P的軌跡方程.【小問1詳解】解:設圓M的方程為,則圓心依題意得,解得.所以圓M的方程為.【小問2詳解】解:設,,依題意得,得.點為圓M上的動點,得,化簡得P的軌跡方程為.21、(1)答案見解析;(2).【解析】(1)根據實數a的正負性,結合導數的性質分類討論求解即可;(2)利用常變量分離法,通過構造函數,利用導數的性質進行求解即可.【小問1詳解】當a≤0時,在(0,+∞)上恒成立;當a>0時,令得;令得;綜上:a≤0時f(x)在(0,+∞)上單調遞減;a>0時,f(x)在上單調遞減,在上單調遞增;【小問2詳解】由題意知ax-2lnx≤x-2在(0,+∞)上有解則ax≤x-2+2lnx,令,xg'(x)+0-g(x)↗極大值↘所以,因此有所以a的取值范圍為:【點睛】關鍵點睛:運用常變量分離法利用導數的性質是解題的關鍵.22、(1);(2)或.【解析】(1)求出線段中點,進而得到線段的垂直平分線為,與聯立得交點,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論