




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣西壯族自治區(qū)柳州市柳州高級(jí)中學(xué)2025屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測(cè)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若直線a,b是異面直線,點(diǎn)O是空間中不在直線a,b上的任意一點(diǎn),則()A.不存在過(guò)點(diǎn)O且與直線a,b都相交的直線B.過(guò)點(diǎn)O一定可以作一條直線與直線a,b都相交C.過(guò)點(diǎn)O可以作無(wú)數(shù)多條直線與直線a,b都相交D.過(guò)點(diǎn)O至多可以作一條直線與直線a,b都相交2.已知m,n為異面直線,m⊥平面α,n⊥平面β,直線l滿足l⊥m,l⊥n,則()A.α∥β且∥α B.α⊥β且⊥βC.α與β相交,且交線垂直于 D.α與β相交,且交線平行于3.已知拋物線C:,焦點(diǎn)為F,點(diǎn)到在拋物線上,則()A.3 B.2C. D.4.在平行六面體ABCD﹣A1B1C1D1中,AC與BD的交點(diǎn)為M,設(shè)=,=,=,則=()A.++ B.+C.++ D.+5.已知點(diǎn),Q是圓上的動(dòng)點(diǎn),則線段長(zhǎng)的最小值為()A.3 B.4C.5 D.66.在四面體中,為的中點(diǎn),為棱上的點(diǎn),且,則()A. B.C. D.7.有關(guān)橢圓敘述錯(cuò)誤的是()A.長(zhǎng)軸長(zhǎng)等于4 B.短軸長(zhǎng)等于4C.離心率為 D.的取值范圍是8.在中國(guó)古代,人們用圭表測(cè)量日影長(zhǎng)度來(lái)確定節(jié)氣,一年之中日影最長(zhǎng)的一天被定為冬至.從冬至算起,依次有冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個(gè)節(jié)氣,其日影長(zhǎng)依次成等差數(shù)列,若冬至、立春、春分日影長(zhǎng)之和為31.5尺,小寒、雨水,清明日影長(zhǎng)之和為28.5尺,則大寒、驚蟄、谷雨日影長(zhǎng)之和為()A.25.5尺 B.34.5尺C.37.5尺 D.96尺9.函數(shù)y=x3+x2-x+1在區(qū)間[-2,1]上的最小值為()A. B.2C.-1 D.-410.,,,,設(shè),則下列判斷中正確的是()A. B.C. D.11.若曲線表示圓,則m的取值范圍是()A. B.C. D.12.橢圓的焦點(diǎn)為F1,F(xiàn)2,點(diǎn)P在橢圓上,若|PF1|=4,則∠F1PF2的余弦值為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則實(shí)數(shù)m的值為_(kāi)_____.14.圓錐的軸截面是邊長(zhǎng)為2的等邊三角形,為底面中心,為的中點(diǎn),動(dòng)點(diǎn)在圓錐底面內(nèi)(包括圓周).若,則點(diǎn)形成的軌跡的長(zhǎng)度為_(kāi)_____15.已知圓,過(guò)點(diǎn)作圓O的切線,則切線方程為_(kāi)__________.16.已知線段AB的長(zhǎng)度為3,其兩個(gè)端點(diǎn)A,B分別在x軸、y軸上滑動(dòng),點(diǎn)M滿足.則點(diǎn)M的軌跡方程為_(kāi)_____三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知為坐標(biāo)原點(diǎn),圓的圓心在軸上,點(diǎn)、均在圓上.(1)求圓的標(biāo)準(zhǔn)方程;(2)若直線與橢圓交于兩個(gè)不同的點(diǎn)、,點(diǎn)在圓上,求面積的最大值.18.(12分)已知(1)若函數(shù)在上有極值,求實(shí)數(shù)a的取值范圍;(2)已知方程有兩個(gè)不等實(shí)根,證明:(注:是自然對(duì)數(shù)的底數(shù))19.(12分)如圖,四棱錐中,底面是邊長(zhǎng)為2的正方形,,,且,為的中點(diǎn)(1)求平面與平面夾角的余弦值;(2)在線段上是否存在點(diǎn),使得點(diǎn)到平面的距離為?若存在,確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由20.(12分)已知函數(shù),其中(1)討論的單調(diào)性;(2)若不等式對(duì)一切恒成立,求實(shí)數(shù)k的最大值21.(12分)分別求滿足下列條件的曲線方程(1)以橢圓的短軸頂點(diǎn)為焦點(diǎn),且離心率為的橢圓方程;(2)過(guò)點(diǎn),且漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程22.(10分)已知函數(shù).(1)當(dāng)時(shí),求的極值;(2)當(dāng)時(shí),,求a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】設(shè)直線與點(diǎn)確定平面,由題意可得直線與平面相交或平行.分兩種情形,畫圖說(shuō)明即可.【詳解】點(diǎn)是空間中不在直線,上的任意一點(diǎn),設(shè)直線與點(diǎn)確定平面,由題意可得,故直線與平面相交或平行.(1)若直線與平面相交(如圖1),記,①若,則不存在過(guò)點(diǎn)且與直線,都相交的直線;②若與不平行,則直線即為過(guò)點(diǎn)且與直線,都相交的直線.(2)若直線與平面平行(如圖2),則不存在過(guò)點(diǎn)且與直線,都相交的直線.綜上所述,過(guò)點(diǎn)至多有一條直線與直線,都相交.故選:D.2、D【解析】由平面,直線滿足,且,所以,又平面,,所以,由直線為異面直線,且平面平面,則與相交,否則,若則推出,與異面矛盾,所以相交,且交線平行于,故選D考點(diǎn):平面與平面的位置關(guān)系,平面的基本性質(zhì)及其推論3、D【解析】利用拋物線的定義求解.【詳解】因?yàn)辄c(diǎn)在拋物線上,,解得,利用拋物線的定義知故選:D4、B【解析】利用向量三角形法則、平行四邊形法則、向量共線定理即可得出【詳解】如圖所示,∵=+,又=,=-,=,∴=+,故選:B5、A【解析】根據(jù)圓的幾何性質(zhì)轉(zhuǎn)化為圓心與點(diǎn)的距離加上半徑即可得解.【詳解】圓的圓心為,半徑為,所以,圓上點(diǎn)在線段上時(shí),,故選:A6、A【解析】利用空間向量加法運(yùn)算,減法運(yùn)算,數(shù)乘運(yùn)算即可得到答案.【詳解】如圖故選:A7、A【解析】根據(jù)題意求出,進(jìn)而根據(jù)橢圓的性質(zhì)求得答案.【詳解】橢圓方程化為:,則,則長(zhǎng)軸長(zhǎng)為8,短軸長(zhǎng)為4,離心率,x的取值范圍是.即A錯(cuò)誤,B,C,D正確.故選:A.8、A【解析】由題意可知,十二個(gè)節(jié)氣其日影長(zhǎng)依次成等差數(shù)列,設(shè)冬至日的日影長(zhǎng)為尺,公差為尺,利用等差數(shù)列的通項(xiàng)公式,求出,即可求出,從而得到答案【詳解】設(shè)從冬至日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個(gè)節(jié)氣其日影長(zhǎng)依次成等差數(shù)列{},如冬至日的日影長(zhǎng)為尺,設(shè)公差為尺.由題可知,所以,,,,故選:A9、C【解析】詳解】,令,解得或;令,解得函數(shù)在上遞增,在遞減,在遞增,時(shí),取極大值,極大值是時(shí),函數(shù)取極小值,極小值是,而時(shí),時(shí),,故函數(shù)的最小值為,故選C.10、D【解析】通過(guò)湊配構(gòu)造的方式,構(gòu)造出新式子,且可以化簡(jiǎn)為整數(shù),然后利用放縮思想得到S的范圍.【詳解】解:,,,,,;,.故選:D11、C【解析】按照?qǐng)A的一般方程滿足的條件求解即可.【詳解】或.故選:C.12、B【解析】根據(jù)題意,橢圓的標(biāo)準(zhǔn)方程為,其中則,則有|F1F2|=2,若a=3,則|PF1|+|PF2|=2a=6,又由|PF1|=4,則|PF2|=6-|PF1|=2,則cos∠F1PF2==.故選B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分別求出橢圓和拋物線的焦點(diǎn)坐標(biāo)即可出值.【詳解】由橢圓方程可知,,,則,即橢圓的右焦點(diǎn)的坐標(biāo)為,拋物線的焦點(diǎn)坐標(biāo)為,∵拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,∴,即,故答案為:.14、【解析】建立空間直角坐標(biāo)系設(shè),,,,于是,,因?yàn)椋裕瑥亩藶辄c(diǎn)形成的軌跡方程,其在底面圓盤內(nèi)的長(zhǎng)度為15、或【解析】首先判斷點(diǎn)圓位置關(guān)系,再設(shè)切線方程并聯(lián)立圓的方程,根據(jù)所得方程求參數(shù)k,即可寫出切線方程.【詳解】由題設(shè),,故在圓外,根據(jù)圓及,知:過(guò)作圓O的切線斜率一定存在,∴可設(shè)切線為,聯(lián)立圓的方程,整理得,∴,解得或.∴切線方程為或.故答案為:或.16、【解析】設(shè)出動(dòng)點(diǎn),根據(jù)已知條件得到關(guān)于的方程.【詳解】設(shè),由,有,得,所以,由得:,所以點(diǎn)的軌跡的方程是.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】(1)求出圓心坐標(biāo),可求得圓的半徑,進(jìn)而可得出圓的標(biāo)準(zhǔn)方程;(2)求得點(diǎn)到直線的距離,將直線的方程與橢圓的方程聯(lián)立,求得的表達(dá)式,利用三角形的面積公式結(jié)合基本不等式可求得結(jié)果.【小問(wèn)1詳解】解:由題知,線段的中點(diǎn)為,直線的斜率,所以線段的中垂線為,即為,所以圓的圓心為軸與的交點(diǎn),所以圓的半徑,所以圓的標(biāo)準(zhǔn)方程為.【小問(wèn)2詳解】解:由題知:圓心到直線的距離,因?yàn)椋詧A心到直線的距離,所以到直線的距離,設(shè)點(diǎn)、,聯(lián)立可得,,,則,所以,,所以,所以,所以當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,所以當(dāng)時(shí),取得最大值.【點(diǎn)睛】方法點(diǎn)睛:圓錐曲線中的最值問(wèn)題解決方法一般分兩種:一是幾何法,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來(lái)求最值;二是代數(shù)法,常將圓錐曲線的最值問(wèn)題轉(zhuǎn)化為二次函數(shù)或三角函數(shù)的最值問(wèn)題,然后利用基本不等式、函數(shù)的單調(diào)性或三角函數(shù)的有界性等求最值18、(1)(2)證明見(jiàn)解析.【解析】(1)利用導(dǎo)數(shù)判斷出在上單增,在上單減,在處取得唯一的極值,列不等式組,即可求出實(shí)數(shù)a的取值范圍;(2)記函數(shù),把證明,轉(zhuǎn)化為只需證明,用分析法證明即可.【小問(wèn)1詳解】,定義域?yàn)椋?令,解得:;令,解得:所以在上單增,在上單減,在處取得唯一的極值.要使函數(shù)在上有極值,只需,解得:,即實(shí)數(shù)a的取值范圍為.【小問(wèn)2詳解】記函數(shù).則函數(shù)有兩個(gè)不等實(shí)根.因?yàn)椋瑑墒较鄿p得,,兩式相加得,.因?yàn)椋砸C,只需證明,只需證明,只需證明,.證.設(shè),只需證明.記,則,所以在上2單增,所以,所以,即,所以.即證.【點(diǎn)睛】導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、極值(最值)最有效的工具,而函數(shù)是高中數(shù)學(xué)中重要的知識(shí)點(diǎn),對(duì)導(dǎo)數(shù)的應(yīng)用的考查主要從以下幾個(gè)角度進(jìn)行:(1)考查導(dǎo)數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系;(2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù);(3)利用導(dǎo)數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問(wèn)題;(4)利用導(dǎo)數(shù)證明不等式19、(1)(2)存在,點(diǎn)為線段的靠近點(diǎn)的三等分點(diǎn)【解析】(1)根據(jù)題意證得平面,進(jìn)而證得平面,得到平面,以點(diǎn)為坐標(biāo)原點(diǎn),,,所在直線分別為軸、軸和軸建立空間直角坐標(biāo)系,求得平面和平面的法向量,結(jié)合向量的夾角公式,即可求解;(2)設(shè)點(diǎn),求得平面的法向量為,結(jié)合向量的距離公式列出方程,求得的值,即可得到答案.【小問(wèn)1詳解】解:因?yàn)樗倪呅螢檎叫危瑒t,,由,,,所以平面,因?yàn)槠矫妫裕钟桑云矫妫忠驗(yàn)槠矫妫裕驗(yàn)榍移矫妫云矫妫善矫妫遥环烈渣c(diǎn)為坐標(biāo)原點(diǎn),,,所在直線分別為軸、軸和軸建立空間直角坐標(biāo)系,如圖所示,則,,,,可得,,,設(shè)平面的法向量為,則,取,可得,所以,易得平面的法向量為,則,由平面與平面夾角為銳角,所以平面與平面夾角的余弦值【小問(wèn)2詳解】解:設(shè)點(diǎn),可得,,設(shè)平面的法向量為,則,取,可得,所以,所以點(diǎn)到平面的距離為,解得,即或因?yàn)椋怨十?dāng)點(diǎn)為線段的靠近點(diǎn)的三等分點(diǎn)時(shí),點(diǎn)到平面的距離為.20、(1)答案見(jiàn)解析(2)【解析】(1)先對(duì)函數(shù)求導(dǎo),然后分和討論導(dǎo)數(shù)的正負(fù),從而可求出函數(shù)的單調(diào)區(qū)間,(2)由題意得恒成立,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出其最小值即可【小問(wèn)1詳解】由,得當(dāng)時(shí),恒成立,∴在上單調(diào)遞增當(dāng)時(shí),令,得,得,∴在上單調(diào)遞增,在上單調(diào)遞減綜上所述:當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減【小問(wèn)2詳解】依題意得對(duì)一切恒成立,即令,則令,則在上單調(diào)遞增,而當(dāng)時(shí),,即;當(dāng)時(shí),,即∴在上單調(diào)遞減,在上單調(diào)遞增∴∴,即k的最大值為21、(1)(2)【解析】(1)由題意得出的值后寫橢圓方程(2)待定系數(shù)法設(shè)方程,由題意列方程求解【小問(wèn)1詳解】的短軸頂點(diǎn)為(0,-3),(0,3),∴所求橢圓的焦點(diǎn)在y軸上,且c=3又,∴a=6.∴∴所求橢圓方程為【小問(wèn)2詳解】根據(jù)雙曲線漸近線方程為,可設(shè)雙曲線的方程,把代入得m=1.所以雙曲線的方程為22、(1)極大值,沒(méi)有極小值(2)【解析】(1)把代入,然后對(duì)函數(shù)求導(dǎo),結(jié)合導(dǎo)數(shù)可求函數(shù)單調(diào)區(qū)間,即可得解;(2)構(gòu)造函數(shù),將不等式的恒成立轉(zhuǎn)化為函數(shù)的最值問(wèn)題,結(jié)合導(dǎo)數(shù)與單調(diào)性及函數(shù)的性質(zhì)對(duì)進(jìn)行分類討論,其中當(dāng)和時(shí)易判斷函數(shù)的單調(diào)性以及最小值
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 承包地轉(zhuǎn)包合同協(xié)議書
- 燒烤店合同解除協(xié)議書
- 考科目二協(xié)議書
- 退出入股協(xié)議書
- 費(fèi)用資助協(xié)議書
- 藥品上市協(xié)議書
- 土地置換及建設(shè)協(xié)議書
- 茶葉代賣協(xié)議書
- 紙廠銷毀協(xié)議書
- 未施工合同解除協(xié)議書
- 學(xué)校食堂“三同三公開(kāi)”制度實(shí)施方案
- 危化品駕駛員押運(yùn)員安全培訓(xùn)
- 2025年福建福州地鐵集團(tuán)有限公司招聘筆試參考題庫(kù)含答案解析
- 肝硬化行TIPS術(shù)后整體護(hù)理查房
- 人工智能在新聞媒體領(lǐng)域的應(yīng)用
- 【MOOC】儒家倫理-南京大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 銀保部三年規(guī)劃
- 2024治安調(diào)解協(xié)議書樣式
- 零工市場(chǎng)(驛站)運(yùn)營(yíng)管理 投標(biāo)方案(技術(shù)方案)
- 小學(xué)二年級(jí)數(shù)學(xué)找規(guī)律練習(xí)題及答案
- 智研咨詢重磅發(fā)布:2024年中國(guó)航運(yùn)行業(yè)供需態(tài)勢(shì)、市場(chǎng)現(xiàn)狀及發(fā)展前景預(yù)測(cè)報(bào)告
評(píng)論
0/150
提交評(píng)論