




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆山東省莒縣第二中學高三高考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.()A. B. C. D.2.已知函數,以下結論正確的個數為()①當時,函數的圖象的對稱中心為;②當時,函數在上為單調遞減函數;③若函數在上不單調,則;④當時,在上的最大值為1.A.1 B.2 C.3 D.43.一個超級斐波那契數列是一列具有以下性質的正整數:從第三項起,每一項都等于前面所有項之和(例如:1,3,4,8,16…).則首項為2,某一項為2020的超級斐波那契數列的個數為()A.3 B.4 C.5 D.64.我國古代數學家秦九韶在《數書九章》中記述了“三斜求積術”,用現代式子表示即為:在中,角所對的邊分別為,則的面積.根據此公式,若,且,則的面積為()A. B. C. D.5.某幾何體的三視圖如圖所示,則該幾何體的最長棱的長為()A. B. C. D.6.如圖,平面四邊形中,,,,,現將沿翻折,使點移動至點,且,則三棱錐的外接球的表面積為()A. B. C. D.7.中國古代用算籌來進行記數,算籌的擺放形式有縱橫兩種形式(如圖所示),表示一個多位數時,像阿拉伯記數一樣,把各個數位的數碼從左到右排列,但各位數碼的籌式需要縱橫相間,其中個位、百位、方位……用縱式表示,十位、千位、十萬位……用橫式表示,則56846可用算籌表示為()A. B. C. D.8.已知拋物線:()的焦點為,為該拋物線上一點,以為圓心的圓與的準線相切于點,,則拋物線方程為()A. B. C. D.9.若復數滿足,則()A. B. C. D.10.是虛數單位,則()A.1 B.2 C. D.11.如圖所示的程序框圖,當其運行結果為31時,則圖中判斷框①處應填入的是()A. B. C. D.12.如圖,某幾何體的三視圖是由三個邊長為2的正方形和其內部的一些虛線構成的,則該幾何體的體積為()A. B. C.6 D.與點O的位置有關二、填空題:本題共4小題,每小題5分,共20分。13.設O為坐標原點,,若點B(x,y)滿足,則的最大值是__________.14.函數的圖象向右平移個單位后,與函數的圖象重合,則_____.15.已知數列{an}的前n項和為Sn,向量(4,﹣n),(Sn,n+3).若⊥,則數列{}前2020項和為_____16.在中,角,,的對邊分別為,,,若,且,則面積的最大值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列的前項和為,且滿足,各項均為正數的等比數列滿足(1)求數列的通項公式;(2)若,求數列的前項和18.(12分)設函數(其中),且函數在處的切線與直線平行.(1)求的值;(2)若函數,求證:恒成立.19.(12分)某校共有學生2000人,其中男生900人,女生1100人,為了調查該校學生每周平均體育鍛煉時間,采用分層抽樣的方法收集該校100名學生每周平均體育鍛煉時間(單位:小時).(1)應抽查男生與女生各多少人?(2)根據收集100人的樣本數據,得到學生每周平均體育鍛煉時間的頻率分布表:時間(小時)[0,1](1,2](2,3](3,4](4,5](5,6]頻率0.050.200.300.250.150.05若在樣本數據中有38名男學生平均每周課外體育鍛煉時間超過2小時,請完成每周平均體育鍛煉時間與性別的列聯表,并判斷是否有95%的把握認為“該校學生的每周平均體育鍛煉時間與性別有關”?男生女生總計每周平均體育鍛煉時間不超過2小時每周平均體育鍛煉時間超過2小時總計附:K2.P(K2≥k0)0.1000.0500.0100.0052.7063.8416.6357.87920.(12分)在中,角所對的邊分別為,若,,,且.(1)求角的值;(2)求的最大值.21.(12分)如圖,三棱柱的所有棱長均相等,在底面上的投影在棱上,且∥平面(Ⅰ)證明:平面平面;(Ⅱ)求直線與平面所成角的余弦值.22.(10分)如圖,在四棱錐中,底面為菱形,為正三角形,平面平面分別是的中點.(1)證明:平面(2)若,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
分子分母同乘,即根據復數的除法法則求解即可.【詳解】解:,故選:A【點睛】本題考查復數的除法運算,屬于基礎題.2、C【解析】
逐一分析選項,①根據函數的對稱中心判斷;②利用導數判斷函數的單調性;③先求函數的導數,若滿足條件,則極值點必在區間;④利用導數求函數在給定區間的最值.【詳解】①為奇函數,其圖象的對稱中心為原點,根據平移知識,函數的圖象的對稱中心為,正確.②由題意知.因為當時,,又,所以在上恒成立,所以函數在上為單調遞減函數,正確.③由題意知,當時,,此時在上為增函數,不合題意,故.令,解得.因為在上不單調,所以在上有解,需,解得,正確.④令,得.根據函數的單調性,在上的最大值只可能為或.因為,,所以最大值為64,結論錯誤.故選:C【點睛】本題考查利用導數研究函數的單調性,極值,最值,意在考查基本的判斷方法,屬于基礎題型.3、A【解析】
根據定義,表示出數列的通項并等于2020.結合的正整數性質即可確定解的個數.【詳解】由題意可知首項為2,設第二項為,則第三項為,第四項為,第五項為第n項為且,則,因為,當的值可以為;即有3個這種超級斐波那契數列,故選:A.【點睛】本題考查了數列新定義的應用,注意自變量的取值范圍,對題意理解要準確,屬于中檔題.4、A【解析】
根據,利用正弦定理邊化為角得,整理為,根據,得,再由余弦定理得,又,代入公式求解.【詳解】由得,即,即,因為,所以,由余弦定理,所以,由的面積公式得故選:A【點睛】本題主要考查正弦定理和余弦定理以及類比推理,還考查了運算求解的能力,屬于中檔題.5、D【解析】
先根據三視圖還原幾何體是一個四棱錐,根據三視圖的數據,計算各棱的長度.【詳解】根據三視圖可知,幾何體是一個四棱錐,如圖所示:由三視圖知:,所以,所以,所以該幾何體的最長棱的長為故選:D【點睛】本題主要考查三視圖的應用,還考查了空間想象和運算求解的能力,屬于中檔題.6、C【解析】
由題意可得面,可知,因為,則面,于是.由此推出三棱錐外接球球心是的中點,進而算出,外接球半徑為1,得出結果.【詳解】解:由,翻折后得到,又,則面,可知.又因為,則面,于是,因此三棱錐外接球球心是的中點.計算可知,則外接球半徑為1,從而外接球表面積為.故選:C.【點睛】本題主要考查簡單的幾何體、球的表面積等基礎知識;考查空間想象能力、推理論證能力、運算求解能力及創新意識,屬于中檔題.7、B【解析】
根據題意表示出各位上的數字所對應的算籌即可得答案.【詳解】解:根據題意可得,各個數碼的籌式需要縱橫相間,個位,百位,萬位用縱式表示;十位,千位,十萬位用橫式表示,用算籌表示應為:縱5橫6縱8橫4縱6,從題目中所給出的信息找出對應算籌表示為中的.故選:.【點睛】本題主要考查學生的合情推理與演繹推理,屬于基礎題.8、C【解析】
根據拋物線方程求得點的坐標,根據軸、列方程,解方程求得的值.【詳解】不妨設在第一象限,由于在拋物線上,所以,由于以為圓心的圓與的準線相切于點,根據拋物線的定義可知,、軸,且.由于,所以直線的傾斜角為,所以,解得,或(由于,故舍去).所以拋物線的方程為.故選:C【點睛】本小題主要考查拋物線的定義,考查直線的斜率,考查數形結合的數學思想方法,屬于中檔題.9、C【解析】
把已知等式變形,利用復數代數形式的除法運算化簡,再由復數模的計算公式求解.【詳解】解:由,得,∴.故選C.【點睛】本題考查復數代數形式的乘除運算,考查復數模的求法,是基礎題.10、C【解析】
由復數除法的運算法則求出,再由模長公式,即可求解.【詳解】由.故選:C.【點睛】本題考查復數的除法和模,屬于基礎題.11、C【解析】
根據程序框圖的運行,循環算出當時,結束運行,總結分析即可得出答案.【詳解】由題可知,程序框圖的運行結果為31,當時,;當時,;當時,;當時,;當時,.此時輸出.故選:C.【點睛】本題考查根據程序框圖的循環結構,已知輸出結果求條件框,屬于基礎題.12、B【解析】
根據三視圖還原直觀圖如下圖所示,幾何體的體積為正方體的體積減去四棱錐的體積,即可求出結論.【詳解】如下圖是還原后的幾何體,是由棱長為2的正方體挖去一個四棱錐構成的,正方體的體積為8,四棱錐的底面是邊長為2的正方形,頂點O在平面上,高為2,所以四棱錐的體積為,所以該幾何體的體積為.故選:B.【點睛】本題考查三視圖求幾何體的體積,還原幾何體的直觀圖是解題的關鍵,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】,可行域如圖,直線與圓相切時取最大值,由14、【解析】
根據函數圖象的平移變換公式求得變換后的函數解析式,再利用誘導公式求得滿足的方程,結合題中的范圍即可求解.【詳解】由函數圖象的平移變換公式可得,函數的圖象向右平移個單位后,得到的函數解析式為,因為函數,所以函數與函數的圖象重合,所以,即,因為,所以.故答案為:【點睛】本題考查函數圖象的平移變換和三角函數的誘導公式;誘導公式的靈活運用是求解本題的關鍵;屬于中檔題.15、【解析】
由已知可得?4Sn﹣n(n+3)=0,可得Sn,n=1時,a1=S1=1.當n≥2時,an=Sn﹣Sn﹣1.可得:2().利用裂項求和方法即可得出.【詳解】∵⊥,∴?4Sn﹣n(n+3)=0,∴Sn,n=1時,a1=S1=1.當n≥2時,an=Sn﹣Sn﹣1.,滿足上式,.∴2().∴數列{}前2020項和為2(1)=2(1).故答案為:.【點睛】本題考查了向量垂直與數量積的關系、數列遞推關系、裂項求和方法,考查了推理能力與計算能力,屬于中檔題.16、【解析】
利用正弦定理將角化邊得到,再由余弦定理得到,根據同角三角函數的基本關系表示出,最后利用面積公式得到,由基本不等式求出的取值范圍,即可得到面積的最值;【詳解】解:∵在中,,∴,∴,∴,∴.∵,即,當且僅當時等號成立,∴,∴面積的最大值為.故答案為:【點睛】本題考查正弦定理、余弦定理解三角形,三角形面積公式的應用,以及基本不等式的應用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)由化為,利用數列的通項公式和前n項和的關系,得到是首項為,公差為的等差數列求解.(2)由(1)得到,再利用錯位相減法求解.【詳解】(1)可以化為,,,,又時,數列從開始成等差數列,,代入得是首項為,公差為的等差數列,,.(2)由(1)得,,,兩式相減得,,.【點睛】本題主要考查數列的通項公式和前n項和的關系和錯位相減法求和,還考查了運算求解的能力,屬于中檔題.18、(1)(2)證明見解析【解析】
(1)求導得到,解得答案.(2)變形得到,令函數,求導得到函數單調區間得到,,得到證明.【詳解】(1),,解得.(2)得,變形得,令函數,,令解得,當時,時.函數在上單調遞增,在上單調遞減,,而函數在區間上單調遞增,,,即,即,恒成立.【點睛】本題考查了根據切線求參數,證明不等式,意在考查學生的計算能力和轉化能力,綜合應用能力.19、(1)男生人數為人,女生人數55人.(2)列聯表答案見解析,有95%的把握認為“該校學生的每周平均體育鍛煉時間與性別有關.【解析】
(1)求出男女比例,按比例分配即可;(2)根據題意結合頻率分布表,先求出二聯表中數值,再結合公式計算,利用表格數據對比判斷即可【詳解】(1)因為男生人數:女生人數=900:1100=9:11,所以男生人數為,女生人數100﹣45=55人,(2)由頻率頻率直方圖可知學生每周平均體育鍛煉時間超過2小時的人數為:(1×0.3+1×0.25+1×0.15+1×0.05)×100=75人,每周平均體育鍛煉時間超過2小時的女生人數為37人,聯表如下:男生女生總計每周平均體育鍛煉時間不超過2小時71825每周平均體育鍛煉時間超過2小時383775總計4555100因為3.892>3.841,所以有95%的把握認為“該校學生的每周平均體育鍛煉時間與性別有關.【點睛】本題考查分層抽樣,獨立性檢驗,熟記公式,正確計算是關鍵,屬于中檔題.20、(1);(2).【解析】
(1)由正弦定理可得,再用余弦定理即可得到角C;(2),再利用求正弦型函數值域的方法即可得到答案.【詳解】(1)因為,所以.在中,由正弦定理得,所以,即.在中,由余弦定理得,又因為,所以.(2)由(1)得,在中,,所以.因為,所以,所以當,即時,有最大值1,所以的最大值為.【點睛】本題考查正余弦定理解三角形,涉及到兩角差的正弦公式、輔助角公式、向量數量積的坐標運算,是一道容易題.21、(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)連接交于點,連接,由于平面,得出,根據線線位置關系得出,利用線面垂直的判定和性質得出,結合條件以及面面垂直的判定,即可證出平面平面;(Ⅱ)根據題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 酒店噴淋工程施工方案
- 2025電商孵化園企業入駐合同標準版孵化場地租賃協議
- 《企業培訓與發展》課件
- 2025至2031年中國側向移動鋼質防火卷簾門行業投資前景及策略咨詢研究報告
- 2025制造企業廠房租賃合同
- 2025員工股權投資信托合同示例
- 2025至2030年中國遞緯器螺燈數據監測研究報告
- 2025至2030年中國自潤滑不銹鋼關節軸承數據監測研究報告
- 煤氣柜拆除施工方案范本
- 2025至2030年中國電氣導管數據監測研究報告
- 開封文化藝術職業學院單招《職業技能測試》參考試題庫(含答案)
- 《坦克的發展歷程》課件
- 軍事研學旅行活動策劃
- (完整)有效備課上課聽課評課
- 采購管理系統的六大功能模塊
- 渠道施工課件
- 世界500強人力資源總監管理筆記
- 《瘋狂動物城》全本臺詞中英文對照
- 金融風險傳染性研究
- 電力出版社材料力學課后習題答案
- 成人體外心肺復蘇專家共識(2023版)解讀
評論
0/150
提交評論