




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
遼寧省六校協作體2025屆數學高二上期末學業質量監測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線l:的傾斜角為,則()A. B.1C. D.-12.已知動圓M與直線y=2相切,且與定圓C:外切,求動圓圓心M的軌跡方程A. B.C. D.3.已知,則點關于平面的對稱點的坐標是()A. B.C. D.4.如圖,過拋物線的焦點的直線交拋物線于點、,交其準線于點,若,且,則的值為()A. B.C. D.5.已知點是橢圓上一點,點,則的最小值為A. B.C. D.6.命題“,”的否定是()A., B.,C., D.,7.胡蘿卜中含有大量的胡蘿卜素,攝入人體消化器官后,可以轉化為維生素,現從,兩個品種的胡蘿卜所含的胡蘿卜素(單位:)得到莖葉圖如圖所示,則下列說法不正確的是A. B.的方差大于的方差C.品種的眾數為 D.品種的中位數為8.已知雙曲線的漸近線方程為,則該雙曲線的離心率等于()A. B.C.2 D.49.已知橢圓的離心率為,則()A. B.C. D.10.若等比數列滿足,,則數列的公比為()A. B.C. D.11.如圖1所示,拋物面天線是指由拋物面(拋物線繞其對稱軸旋轉形成的曲面)反射器和位于其焦點上的照射器(饋源,通常采用喇叭天線)組成的單反射面型天線,廣泛應用于微波和衛星通訊等,具有結構簡單、方向性強、工作頻帶寬等特點.圖2是圖1的軸截面,,兩點關于拋物線的對稱軸對稱,是拋物線的焦點,是饋源的方向角,記為.焦點到頂點的距離與口徑的比為拋物面天線的焦徑比,它直接影響天線的效率與信噪比等.若饋源方向角滿足,則該拋物面天線的焦徑比為()A. B.C. D.212.直線與直線交于點Q,m是實數,O為坐標原點,則的最大值是()A.2 B.C. D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知圓的方程為,點是直線上的一個動點,過點作圓的兩條切線為切點,則四邊形面積的最小值為__________;直線__________過定點.14.數列的前項和為,則該數列的通項公式___________15.設是橢圓上一點,分別是橢圓的左、右焦點,若,則的大小_____.16.以下數據為某校參加數學競賽的名同學的成績:,,,,,,,,,,,,,,,,,,,.則這人成績的第百分位數可以是______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列中,,.(1)求證:數列是等差數列,并求數列的通項公式;(2)求數列的前項和.18.(12分)已知命題:,在下面①②中任選一個作為:,使為真命題,求出實數a的取值范圍.①關于x的方程有兩個不等正根;②.(若選①、選②都給出解答,只按第一個解答計分.)19.(12分)已知函數,當時,有極大值3(1)求的值;(2)求函數的極小值20.(12分)在①,;②,,③,這三個條件中任選一個,補充在下面問題中并解決問題問題:設等差數列的前項和為,________________,若,判斷是否存在最大值,若存在,求出取最大值時的值;若不存在,說明理由注:如果選擇多個條件分別解答.按第一個解答記分21.(12分)已知首項為1的等比數列,滿足(1)求數列的通項公式;(2)求數列的前n項和22.(10分)如圖,在棱長為2的正方體中,,分別為線段,的中點.(1)求點到平面的距離;(2)求平面與平面夾角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由傾斜角求出斜率,列方程即可求出m.【詳解】因為直線l的傾斜角為,所以斜率.所以,解得:.故選:A2、D【解析】由題意動圓M與直線y=2相切,且與定圓C:外切∴動點M到C(0,-3)的距離與到直線y=3的距離相等由拋物線的定義知,點M的軌跡是以C(0,-3)為焦點,直線y=3為準線的拋物線故所求M的軌跡方程為考點:軌跡方程3、C【解析】根據對稱性求得坐標即可.【詳解】點關于平面的對稱點的坐標是,故選:C4、B【解析】分別過點、作準線的垂線,垂足分別為點、,設,根據拋物線的定義以及直角三角形的性質可求得,結合已知條件求得,分析出為的中點,進而可得出,即可得解.【詳解】如圖,分別過點、作準線的垂線,垂足分別為點、,設,則由己知得,由拋物線的定義得,故,在直角三角形中,,,因為,則,從而得,所以,,則為的中點,從而.故選:B.5、D【解析】設,則,.所以當時,的最小值為.故選D.6、D【解析】根據含一個量詞的命題的否定方法:修改量詞,否定結論,直接得到結果.【詳解】命題“,”的否定是“,”.故選:D7、C【解析】讀懂莖葉圖,分別計算出眾數、中位數、方差,然后對各選項進行判斷【詳解】由莖葉圖知,品種所含胡蘿卜素普遍高于品種,所以,故A正確;品種的數據波動比品種的數據波動大,所以的方差大于的方差,故B正確;品種的眾數為與,故C錯誤;品種的數據的中位數為,故D正確.故選.【點睛】本題主要考查了對數據的分析,首先要讀懂莖葉圖,然后計算出眾數、中位數、方差,即可對各選項進行判斷,較為基礎8、A【解析】由雙曲線的漸近線方程,可得,再由的關系和離心率公式,計算即可得到所求值【詳解】解:雙曲線的漸近線方程為,由題意可得即,可得由可得,故選:A.9、D【解析】由離心率及橢圓參數關系可得,進而可得.【詳解】因為,則,所以.故選:D10、D【解析】設等比數列的公比為,然后由已知條件列方程組求解即可【詳解】設等比數列的公比為,因為,,所以,所以,解得,故選:D11、B【解析】建立平面直角坐標系,利用題設條件得到得點坐標,代入拋物線方程化簡即可求解【詳解】建立如圖所示的平面直角坐標系,設拋物線的方程為()在中,則所以則所以,所以將代入拋物線方程中得所以或即或(舍)當時,故選:B12、B【解析】求出兩直線的交點坐標,結合兩點間的距離公式得到,進而可以求出結果.【詳解】因為與的交點坐標為所以,當時,,所以的最大值是,故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】根據切線的相關性質將四邊形面積化為,即求出最小值即可,即圓心到直線的距離;又可得四點在以為直徑的圓上,且是兩圓的公共弦,設出點坐標,求出圓的方程可得直線方程,即可得出定點.詳解】由圓得圓心,半徑,由題意可得,在中,,,可知當垂直直線時,,所以四邊形的面積的最小值為,可得四點在以為直徑的圓上,且是兩圓的公共弦,設,則圓心為,半徑為,則該圓方程為,整理可得,聯立兩圓可得直線AB的方程為,即可得當時,,故直線過定點.故答案為:;.14、【解析】根據與關系求解即可.【詳解】當時,,當時,,檢驗:,所以.故答案為:15、【解析】,,利用橢圓的定義、結合余弦定理、已知條件,可得,解得,從而可得結果【詳解】橢圓,可得,設,,可得,化簡可得:,,故答案為【點睛】本題主要考查橢圓的定義以及余弦定理的應用,屬于中檔題.對余弦定理一定要熟記兩種形式:(1);(2),同時還要熟練掌握運用兩種形式的條件.另外,在解與三角形、三角函數有關的問題時,還需要記住等特殊角的三角函數值,以便在解題中直接應用.16、【解析】利用百分位數的求法直接求解即可.【詳解】解:將所給數據按照從小到大的順序排列:,,,,,,,,,,,,,,,,,,,.數據量,∵是整數,∴故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,(2)【解析】(1)由,取倒數得到,再利用等差數列的定義求解;(2)由(1)得到,利用錯位相減法求解.【小問1詳解】證明:由,以及,顯然,所以,即,所以數列是首項為,公差為的等差數列,所以,所以;【小問2詳解】由(1)可得,,所以數列的前項和①所以②則由②-①可得:,所以數列的前項和.18、答案見解析【解析】根據題意,分析、為真時的取值范圍,又由復合命題真假的判斷方法可得、都是真命題,據此分析可得答案.【詳解】解:選①時由知在上恒成立,∴,即又由q:關于x的方程有兩個不等正根,知解得,由為真命題知,解得.實數a的取值范圍.選②時由知在上恒成立,∴,即又由,知在上恒成立,∴,又,當且僅當時取“=”號,∴,由為真命題知,解得.實數a的取值范圍.19、(1);(2)0【解析】(1)由題意得,則可得到關于實數的方程組,求解方程組,即可求得的值;(2)結合(1)中的值得出函數的解析式,即可利用導數求得函數的極小值.【詳解】(1),當時,有極大值3,所以,解得,經檢驗,滿足題意,所以;(2)由(1)得,則,令,得或,列表得極小值極大值易知是函數的極小值點,所以當時,函數有極小值0【點睛】本題主要考查了函數的極值的概念,以及利用導數求解函數的極值,考查了學生對極值概念的理解與運算求解能力.20、答案不唯一,具體見解析【解析】選①:易得,法一:令求n,即可為何值時取最大值;法二:寫出,利用等差數列前n項和的函數性質判斷為何值時有最大值;選②:由數列前n項和及等差數列下標和的性質易得、即可確定有最大值時值;選③:由等差數列前n項和公式易得、即可確定有最大值時值;【詳解】選①:設數列的公差為,,,解得,即,法一:當時,有,得,∴當時,;,;時,,∴或時,取最大值法二:,對稱軸,∴或時,取最大值選②:由,得,由等差中項的性質有,即,由,得,∴,故,∴當時,,時,,故時,取最大值選③:由,得,可得,由,得,可得,∴,故,∴當時,,時,,故時,取最大值【點睛】關鍵點點睛:根據所選的條件,結合等差數列前n項和公式的性質、下標和相等的性質等確定數列中項的正負性,找到界點n值即可.21、(1)(2)【解析】(1)根據已知條件求得數列的公比,由此求得.(2)利用錯位相減求和法求得.【小問1詳解】設等比數列的公比為,由,可得.故數列是以1為首項,3為公比的等比數列,所以【小問2詳解】由(1)得,,①,②①②,得所以22、(1);(2).【解析】(1)以為原點,為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 分期購物合同標準文本
- 共享合作合同標準文本
- 產品委托購銷合同標準文本
- 個人轉租合同續原合同標準文本
- 農莊倉庫轉讓合同樣本
- 代理合同樣本在找到
- 借住房合同標準文本
- 內控審計合同范例
- 分紅簽約合同樣本
- 辦公茶葉合同標準文本
- 2025-2030中國建筑智能化工程行業市場發展分析及發展趨勢前景研究報告
- 初中勞動教育課程實施方案
- 政務人員禮儀培訓課件
- 橋隧工技能鑒定理論資源高級技師模擬考試題含答案
- 2025-2030中國5G基站建設情況及前景趨勢與投資研究報告
- 話題10 AI人工智能-2025年中考《英語》高頻熱點話題寫作通關攻略
- 2024年上海市工業技術學校招聘筆試真題
- 2025年阿拉伯語水平測試模擬試卷:阿拉伯語數字與日期表達應用試題
- 棱柱棱錐棱臺的表面積和體積課件高一下學期數學人教A版1
- 《血管活性藥物靜脈輸注護理》團體標準解讀課件
- 屋頂光伏的鋼結構施工方案
評論
0/150
提交評論