山東省高密市2025屆高二上數學期末綜合測試模擬試題含解析_第1頁
山東省高密市2025屆高二上數學期末綜合測試模擬試題含解析_第2頁
山東省高密市2025屆高二上數學期末綜合測試模擬試題含解析_第3頁
山東省高密市2025屆高二上數學期末綜合測試模擬試題含解析_第4頁
山東省高密市2025屆高二上數學期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省高密市2025屆高二上數學期末綜合測試模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,,其中,,,則()A. B.C. D.2.《九章算術》中的“商功”篇主要講述了以立體幾何為主的各種形體體積的計算,其中塹堵是指底面為直角三角形的直棱柱.如圖,在塹堵中,M是的中點,,,,若,則()A. B.C. D.3.若拋物線上一點到焦點的距離為5,則點的坐標為()A. B.C. D.4.已知數列是以1為首項,2為公差的等差數列,是以1為首項,2為公比的等比數列,設,,則當時,n的最大值是()A.8 B.9C.10 D.115.若直線與互相平行,且過點,則直線的方程為()A. B.C. D.6.已知F是橢圓C的一個焦點,B是短軸的一個端點,直線BF與橢圓C的另一個交點為D,且,則C的離心率為()A. B.C. D.7.“,”的否定是A., B.,C., D.,8.已知奇函數,則的解集為()A. B.C. D.9.在空間直角坐標系中,點關于軸的對稱點為點,則點到直線的距離為()A B.C. D.610.三棱錐D-ABC中,AC=BD,且異面直線AC與BD所成角為60°,E、F分別是棱DC、AB的中點,則EF和AC所成的角等于()A.30° B.30°或60°C.60° D.120°11.已知的三個頂點是,,,則邊上的高所在的直線方程為()A. B.C. D.12.圓C:的圓心坐標和半徑分別為()A.和4 B.(-3,2)和4C.和 D.和二、填空題:本題共4小題,每小題5分,共20分。13.已知向量、滿足,,且,則與的夾角為___________.14.用1,2,3,4,5組成沒有重復數字的五位數,其中個位小于百位且百位小于萬位的五位數有n個,則的展開式中,的系數是___________.(用數字作答)15.分別過橢圓的左、右焦點、作兩條互相垂直的直線、,它們的交點在橢圓的內部,則橢圓的離心率的取值范圍是________16.在等比數列中,,,若數列滿足,則數列的前項和為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面是正方形,側面底面,為側棱上一點(1)求證:;(2)若為中點,平面與側棱于點,且,求四棱錐的體積18.(12分)為了了解高二段1000名學生一周課外活動情況,隨機抽取了若干學生的一周課外活動時間,時間全部介于10分鐘與110分鐘之間,將課外活動時間按如下方式分成五組:第一組,第二組,…,第五組.按上述分組方法得到的頻率分布直方圖如圖所示,已知圖中從左到右前3個組的頻率之比為3∶8∶19,且第二組的頻數為8(1)求第一組數據的頻率并計算調查中隨機抽取了多少名學生的一周課外活動時間;(2)求這組數據的平均數19.(12分)已知拋物線C:經過點.(1)求拋物線C的方程及其準線方程;(2)經過拋物線C的焦點F的直線l與拋物線交于兩點M,N,且與拋物線的準線交于點Q.若,求直線l的方程.20.(12分)如圖1,在中,,,,分別是,邊上的中點,將沿折起到的位置,使,如圖2(1)求點到平面距離;(2)在線段上是否存在一點,使得平面與平面夾角的余弦值為.若存在,求出長;若不存在,請說明理由21.(12分)已知橢圓:的長軸長為6,離心率為,長軸的左,右頂點分別為A,B(1)求橢圓的方程;(2)已知過點的直線交橢圓于M、N兩個不同的點,直線AM,AN分別交軸于點S、T,記,(為坐標原點),當直線的傾斜角為銳角時,求的取值范圍22.(10分)已知等差數列前n項和為,,,若對任意的正整數n成立,求實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先令函數,求導判斷函數的單調性,并作出函數的圖像,由函數的單調性判斷,再由對稱性可得.【詳解】由,則,同理,,令,則,當;當,∴在上單調遞減,單調遞增,所以,即可得,又,,由圖的對稱性可知,.故選:C2、C【解析】建立坐標系,坐標表示向量,求出點坐標,進而求出結果.【詳解】以為坐標原點,,,的方向分別為x,y,z軸的正方向建立空間直角坐標系.不妨令,則,,,,,.因為,所以,則,,,,則解得,,,故.故選:C3、C【解析】設,由拋物線的方程可得準線方程為,由拋物線的性質到焦點的距離等于到準線的距離,求出,解出縱坐標,進而求出【詳解】由題意可得,解得,代入拋物線的方程,解得,所以的坐標,故選:C.4、B【解析】先求出數列和的通項公式,然后利用分組求和求出,再對進行賦值即可求解.【詳解】解:因為數列是以1為首項,2為公差的等差數列所以因為是以1為首項,2為公比的等比數列所以由得:當時,即當時,當時,所以n的最大值是.故選:B.【點睛】關鍵點睛:本題的關鍵是利用分組求和求出,再通過賦值法即可求出使不等式成立的的最大值.5、D【解析】由題意設直線的方程為,然后將點代入直線中,可求出的值,從而可得直線的方程【詳解】因為直線與互相平行,所以設直線的方程為,因為直線過點,所以,得,所以直線的方程為,故選:D6、A【解析】設,根據得,代入橢圓方程即可求得離心率.【詳解】設橢圓方程,所以,設,所以,所以,在橢圓上,所以,.故選:A7、D【解析】通過命題的否定的形式進行判斷【詳解】因為全稱命題的否定是特稱命題,故“,”的否定是“,”.故選D.【點睛】本題考查全稱命題的否定,屬基礎題.8、A【解析】先由求出的值,進而可得的解析式,對求導,利用基本不等式可判斷恒成立,可判斷的單調性,根據單調性脫掉,再解不等式即可.【詳解】的定義域為,因為是奇函數,所以,可得:,所以,經檢驗是奇函數,符合題意,所以,因為,所以,當且僅當即時等號成立,所以在上單調遞增,由可得,即,解得:或,所以的解集為,故選:A.9、C【解析】按照空間中點到直線的距離公式直接求解.【詳解】由題意,,,的方向向量,,則點到直線的距離為.故選:C.10、B【解析】取AD中點為G,連接GF、GE,易知△EFG為等腰三角形,且∠EGF為異面直線AC和BD所成角或其補角,據此可求∠FEG大小,從而得EF和AC所成的角的大小【詳解】如圖,取AD中點為G,連接GF、GE,易知FG∥BD,GE∥AC,且FG=,GE=AC,故FG=GE,∠EGF為異面直線AC和BD所成角或其補角,故∠EGF=60°或120°故EF和AC所成角為∠FEG或其補角,當∠EGF=60°時,∠FEG=60°,當∠EGF=120°時,∠FEG=30°,∴EF和AC所成的角等于30°或60°故選:B11、B【解析】求出邊上的高所在的直線的斜率,再利用點斜式方程可得答案.【詳解】因為,所以邊上的高所在的直線的斜率為,所以邊上的高所在的直線方程為,即.故選:B.12、C【解析】先將方程化為一般形式,再根據公式計算求解即可.【詳解】解:可化為,由圓心為,半徑,易知圓心的坐標為,半徑為故選:C二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】根據向量數量積的計算公式即可計算.【詳解】,,.故答案為:﹒14、2022【解析】根據排列和組合計數公式求出,然后利用二項式定理進行求解即可【詳解】解:用1,2,3,4,5組成沒有重復數字的五位數中,滿足個位小于百位且百位小于萬位的五位數有個,即,當時,,則系數是,故答案為:202215、【解析】根據條件可知以為直徑的圓在橢圓的內部,可得,再根據,即可求得離心率的取值范圍.【詳解】根據條件可知,以為直徑的圓與橢圓沒有交點,即,即,,即.故填:.【點睛】本題考查橢圓離心率的取值范圍,求橢圓離心率是常考題型,涉及的方法包含1.根據直接求,2.根據條件建立關于的齊次方程求解,3.根據幾何關系找到的等量關系求解.16、【解析】求出等比數列的通項公式,可得出的通項公式,推導出數列為等差數列,利用等差數列的求和公式即可得解.【詳解】設等比數列的公比為,則,則,所以,,則,所以,數列為等差數列,故數列的前項和為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)利用面面垂直的性質定理可得出平面,再利用線面垂直的性質可得出;(2)分析可知為的中點,平面,計算出梯形的面積,利用錐體的體積公式可求得四棱錐的體積【小問1詳解】證明:因為四邊形為正方形,則,因為側面底面,平面平面,平面,所以平面,又平面,所以.【小問2詳解】解:因為,平面,平面,所以,平面,因為平面,平面平面,所以,所以,,則,所以,四邊形是直角梯形,又是中點,所以,,所以,由平面,平面,所以,從而,正三角形中,是中點,,即,,所以平面,因為,所以.18、(1)0.06,50名(2)64(分鐘)【解析】(1)利用頻率和為1可求解頻率,再利用頻率,頻數,總數之間的關系可求解學生人數;(2)平均數:頻率分布直方圖中每個小長方形的中點乘以對應的長方形面積之和;【小問1詳解】設圖中從左到右前3個組的頻率分別為3x,8x,19x依題意,得所以.所以第一組數據的頻率為,設調查中隨機抽取了n名學生的課外活動時間,則,得,所以調查中隨機抽取了50名學生的課外活動時間小問2詳解】由題意,這組數據的平均數(分鐘)19、(1)拋物線C的方程為,準線方程為(2)或.【解析】(1)將點代入拋物線求出即可得出拋物線方程和準線方程;(2)設出直線方程,與拋物線聯立,表示出弦長和即可求出.【小問1詳解】將代入可得,解得,所以拋物線C的方程為,準線方程為;【小問2詳解】由題得,設直線方程為,,設,聯立方程,可得,則,所以,因為直線與準線交于點Q,則,則,因為,所以,解得,所以直線l的方程為或.20、(1)(2)存在,【解析】(1)根據題意分別由已知條件計算出的面積和的面積,利用求解,(2)如圖建立空間直角坐標系,設,然后求出平面與平面的法向量,利用向量平夾角公式列方程可求得結果【小問1詳解】在中,,因為,分別是,邊上的中點,所以∥,,所以,所以,因為,所以平面,所以平面,因為平面,所以,所以,因為平面,平面,所以平面平面,因為,所以,因為,所以是等邊三角形,取的中點,連接,則,,因為平面平面,平面平面,平面,所以平面,在中,,所以邊上的高為,所以,在梯形中,,設點到平面的距離為,因為,所以,所以,得,所以點到平面的距離為【小問2詳解】由(1)可知平面,,所以以為原點,建立如圖所示的空間直角坐標系,則,設,則,設平面的法向量為,則,令,則,設平面的法向量為,則,令,則,則平面與平面夾角的余弦值為,兩邊平方得,,解得或(舍去),所以,所以21、(1)(2)【解析】(1)根據橢圓的長軸和離心率,可求得,進而得橢圓方程;(2)先判斷直線斜率為正,然后設出直線方程,和橢圓方程聯立,整理得根與系數的關系,利用直線方程求出點S、T的坐標,再根據確定的表達式,將根與系數的關系式代入化簡,求得結果.【小問1詳解】由題意可得:解得:,所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論