




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆鄭州市重點中學高二數學第一學期期末聯考試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線的傾斜角為,在軸上的截距為,則此直線的方程為()A. B.C. D.2.在等比數列中,,且,則t=()A.-2 B.-1C.1 D.23.已知動直線的傾斜角的取值范圍是,則實數m的取值范圍是()A. B.C. D.4.與空間向量共線的一個向量的坐標是()A. B.C. D.5.口袋中裝有大小形狀相同的紅球3個,白球3個,小明從中不放回的逐一取球,已知在第一次取得紅球的條件下,第二次取得白球的概率為()A.0.4 B.0.5C.0.6 D.0.756.已知長方體中,,,則平面與平面所成的銳二面角的余弦值為()A. B.C. D.7.已知拋物線的焦點為F,過F作斜率為2的直線l與拋物線交于A,B兩點,若弦的中點到拋物線準線的距離為3,則拋物線的方程為()A. B.C. D.8.以下說法:①將一組數據中的每一個數據都加上或減去同一個常數后,方差不變;②設有一個回歸方程,變量增加1個單位時,平均增加5個單位③線性回歸方程必過④設具有相關關系的兩個變量的相關系數為,那么越接近于0,之間的線性相關程度越高;⑤在一個列聯表中,由計算得的值,那么的值越大,判斷兩個變量間有關聯的把握就越大。其中錯誤的個數是()A.0 B.1C.2 D.39.設,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.已知函數,,若對任意的,,都有成立,則實數的取值范圍是()A. B.C. D.11.已知m,n表示兩條不同直線,表示兩個不同平面.設有兩個命題::若,則;:若,則.則下列命題中為真命題的是()A. B.C. D.12.若直線的一個方向向量為,直線的一個方向向量為,則直線與所成的角為()A30° B.45°C.60° D.90°二、填空題:本題共4小題,每小題5分,共20分。13.已知直線與圓交于兩點,則面積的最大值為__________.14.橢圓的右焦點是,兩點是橢圓的左頂點和上頂點,若△是直角三角形,則橢圓的離心率是________.15.拋物線()上的一點到其焦點F的距離______.16.在平面直角坐標系中,已知雙曲線的左,右焦點分別為,,過且與圓相切的直線與雙曲線的一條漸近線相交于點(點在第一象限),若,則雙曲線的離心率___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知命題實數滿足成立,命題方程表示焦點在軸上的橢圓,若命題為真,命題或為真,求實數的取值范圍18.(12分)設橢圓的焦距為,原點到經過兩點的直線的距離為.(1)求橢圓的離心率;(2)如圖所示,是圓的一條直徑,若橢圓經過兩點,求橢圓的標準方程19.(12分)已知等差數列的前n項和為,若公差,且,,成等比數列.(1)求的通項公式;(2)求數列的前n項和.20.(12分)設{an}是公比為正數的等比數列a1=2,a3=a2+4(Ⅰ)求{an}的通項公式;(Ⅱ)設{bn}是首項為1,公差為2的等差數列,求數列{an+bn}的前n項和Sn21.(12分)已知橢圓,斜率為的動直線與橢圓交于A,B兩點,且直線與圓相切.(1)若,求直線的方程;(2)求三角形的面積的取值范圍.22.(10分)已知圓經過點和,且圓心在直線上(1)求圓的標準方程;(2)直線過點,且與圓相切,求直線的方程;(3)設直線與圓相交于兩點,點為圓上的一動點,求的面積的最大值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】求出直線的斜率,利用斜截式可得出直線的方程.【詳解】直線的斜率為,由題意可知,所求直線的方程為.故選:D.2、A【解析】先求出,利用等比中項求出t.【詳解】在等比數列中,,且,所以所以,即,解得:.當時,,不符合等比數列的定義,應舍去,故.故選:A.3、B【解析】根據傾斜角與斜率的關系可得,即可求m的范圍.【詳解】由題設知:直線斜率范圍為,即,可得.故選:B.4、C【解析】根據空間向量共線的坐標表示即可得出結果.【詳解】.故選:C.5、C【解析】求出第一次取得紅球的事件、第一次取紅球第二次取白球的事件概率,再利用條件概率公式計算作答.【詳解】記“第一次取得紅球”為事件A,“第二次取得白球”為事件B,則,,于是得,所以在第一次取得紅球的條件下,第二次取得白球的概率為0.6.故選:C6、A【解析】建立空間直角坐標系,求得平面的一個法向量為,易知平面的一個法向量為,由求解.【詳解】建立如圖所示空間直角坐標系:則,所以,設平面的一個法向量為,則,即,令,則,易知平面的一個法向量為,所以,所以平面與平面所成的銳二面角的余弦值為,故選:A7、B【解析】設出直線,并與拋物線聯立,得到,再根據拋物線的定義建立等式即可求解.【詳解】因為直線l的方程為,即,由消去y,得,設,則,又因為弦的中點到拋物線的準線的距離為3,所以,而,所以,故,解得,所以拋物線的方程為故選:B.8、C【詳解】方差反映一組數據的波動大小,將一組數據中的每個數據都加上或減去同一個常數后,方差不變,故①正確;一個回歸方程,變量增加1個單位時,平均減少5個單位,故②不正確;線性回歸方程必過樣本中心點,故③正確;根據線性回歸分析中相關系數的定義:在線性回歸分析中,相關系數為r,越接近于1,相關程度越大,故④不正確;對于觀察值來說,越大,“x與y有關系”的可信程度越大,故⑤正確.故選:C【點睛】本題主要考查用樣本估計總體、線性回歸方程、獨立性檢驗的基本思想.9、B【解析】求出不等式的等價形式,結合充分條件和必要條件的定義進行判斷即可【詳解】由得或,由得,因為或推不出,但能推出或成立,所以“”是“”的必要不充分條件,故選:B10、B【解析】根據題意,將問題轉化為對任意的,,利用導數求得的最大值,再分離參數,構造函數,利用導數求其最大值,即可求得參數的取值范圍.【詳解】由題可知:對任意的,,都有恒成立,故可得對任意的,;又,則,故在單調遞減,在單調遞增,又,,則當時,,.對任意的,,即,恒成立.也即,不妨令,則,故在單調遞增,在單調遞減.故,則只需.故選:B.11、B【解析】利用直線與平面,平面與平面的位置關系判斷2個命題的真假,再利用復合命題的真值表判斷選項的正誤即可【詳解】,表示兩條不同直線,,表示兩個不同平面:若,,則也可能,也可能與相交,所以是假命題,為真命題;:令直線的方向向量為,直線的方向向量為,若,則,則,所以是真命題,所以為假命題;所以為假命題,是真命題,為假命題,是真命題,所以為假命題故選:12、C【解析】直接由公式,計算兩直線的方向向量的夾角,進而得出直線與所成角的大小【詳解】因為,,所以,所以,所以直線與所成角的大小為故選:C二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】先求出的范圍,再利用面積公式可求面積的最大值.【詳解】圓即為,直線為過原點的直線,如圖,連接,故,解得,此時,故的面積為,當且僅當時等號成立,此時即,故答案為:.14、【解析】由題設易知,應用斜率的兩點式及橢圓參數關系可得,進而求橢圓離心率.【詳解】由題設,,,,又△是直角三角形,顯然,所以,可得,則,解得,又,所以.故答案為:.15、【解析】將點坐標代入方程中可求得拋物線的方程,從而可得到焦點坐標,進而可求出【詳解】解:為拋物線上一點,即有,,拋物線的方程為,焦點為,即有.故答案為:5.16、2【解析】設切點,根據,可得,在中,利用余弦定理構造齊次式,從而可得出答案.【詳解】解:設切點,由,∴,∵為中點,則為中位線,∴,,中,,,,∴.故答案為:2.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、或【解析】首先根據復數的乘方及復數模的計算公式求出命題為真時參數的取值范圍,再根據橢圓的性質求出命題為真時參數的取值范圍,依題意為假,為真,即可求出參數的取值范圍;【詳解】解:因為,,,,所以,所以,所以為真時,因為方程表示焦點在軸上的橢圓,所以,所以,即為真時,所以為假時參數的取值范圍為或,因為命題為真,命題或為真,所以為假,為真,或18、(1)(2)【解析】(1)根據題意得,進而求解離心率即可;(2)根據題意得圓心是線段的中點,且,易知斜率存在,設其直線方程為,再結合韋達定理及弦長公式求解即可.【小問1詳解】解:過點的直線方程為,∴原點到直線的距離,由,得,解得離心率.【小問2詳解】解:由(1)知,橢圓的方程為.依題意,圓心是線段的中點,且.易知,不與軸垂直,設其直線方程,聯立,得.設,則,.由,得,解得.所以.于是.由,得,解得.故橢圓的方程為.19、(1);(2).【解析】(1)由等差數列的通項公式、前n項和公式結合等比數列的性質列方程可得數列首項與公差,即可得解;(2)由,結合裂項相消法即可得解.【詳解】(1)因為數列為等差數列,,,,成等比數列,所以,所以,即,又因為,所以,所以;(2)因為,所以.【點睛】本題考查了等差數列與等比數列的綜合應用及裂項相消法的應用,考查了運算求解能力,屬于中檔題.20、(Ⅰ)an=2×2n﹣1=2n(Ⅱ)2n﹣12n+1﹣2+n2=2n+1+n2﹣2【解析】(Ⅰ)由{an}是公比為正數的等比數列,設其公比,然后利用a1=2,a3=a2+4可求得q,即可求得{an}的通項公式(Ⅱ)由{bn}是首項為1,公差為2的等差數列可求得bn=1+(n﹣1)×2=2n﹣1,然后利用等比數列與等差數列的前n項和公式即可求得數列{an+bn}的前n項和Sn解:(Ⅰ)∵設{an}是公比為正數的等比數列∴設其公比為q,q>0∵a3=a2+4,a1=2∴2×q2="2×q+4"解得q=2或q=﹣1∵q>0∴q="2"∴{an}的通項公式為an=2×2n﹣1=2n(Ⅱ)∵{bn}是首項為1,公差為2的等差數列∴bn=1+(n﹣1)×2=2n﹣1∴數列{an+bn}的前n項和Sn=+=2n+1﹣2+n2=2n+1+n2﹣2點評:本題考查了等比數列的通項公式及數列的求和,注意題目條件的應用.在用等比數列的前n項和公式時注意辨析q是否為1,只要簡單數字運算時不出錯,問題可解,是個基礎題21、(1)或(2)【解析】(1)設直線,利用圓心到直線的距離等于半徑,即可得到方程,求出,即可得解;(2)設,,,利用圓心到直線的距離等于半徑,得到,再聯立直線與橢圓方程,消元列出韋達定理,利用弦長公式表示出,再根據及基本不等式求出,最后再計算直線斜率不存在時三角形的面積,即可得解;【小問1詳解】解:圓,圓心為,半徑;設直線,即,則,解得,所以或;【小問2詳解】解:因為直線的斜率存在,設,,,即,則,所以,即,聯立,消元整理得,所以,,所以所以因為,所以,當且僅當,即時取等號,所以,當軸時,取,,則,此時,所以;22、(1)(2)或(3)【解析】(1)解法一,根據題意設圓的標準方程為,進而待定系數法求解即可;解法二:由題知圓心在線段的垂直平分線上,進而結合題意得圓的圓心與半徑,寫出方程;(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 露營餐椅租賃合同協議
- 集資建房協議書買賣合同
- 長虹玻璃門采購合同協議
- 門窗店轉讓合同協議
- 閣樓出售低價合同協議
- 集團承包酒店合同協議
- 預算服務合同協議
- 鎮村投資協議合同協議
- 預付電費合同協議
- 非法集資簽訂協議合同
- 上海市八校2025屆高考數學三模試卷含解析
- 【MOOC】太極功夫-西南交通大學 中國大學慕課MOOC答案
- 知不足而后進 望遠山而力行-期中家長會【課件】
- 氟化工藝作業安全培訓
- 數字減影血管造影(DSA)X射線設備質量控制檢測規范
- 化工設施設備維護保養方案
- 2024-2030年中國食品輻照行業市場發展趨勢與前景展望戰略分析報告
- 2024秋期國家開放大學《國際法》一平臺在線形考(形考任務1至5)試題及答案
- 2024年新人教版七年級上冊英語教學課件 Unit 1第1課時(Section A 1a-1d)第1課時(Section A 1a-1d)
- 古建供貨合同范本
- 數學建模與系統仿真智慧樹知到期末考試答案章節答案2024年南京理工大學
評論
0/150
提交評論