北京通州區2025屆高二上數學期末經典試題含解析_第1頁
北京通州區2025屆高二上數學期末經典試題含解析_第2頁
北京通州區2025屆高二上數學期末經典試題含解析_第3頁
北京通州區2025屆高二上數學期末經典試題含解析_第4頁
北京通州區2025屆高二上數學期末經典試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北京通州區2025屆高二上數學期末經典試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知F為橢圓的右焦點,A為C的右頂點,B為C上的點,且垂直于x軸.若直線AB的斜率為,則橢圓C的離心率為()A. B.C. D.2.甲、乙、丙、丁四位同學一起去找老師詢問成語競賽的成績.老師說:你們四人中有位優秀,位良好,我現在給甲看乙、丙的成績,給乙看丙的成績,給丁看甲的成績.看后甲對大家說:我還是不知道我的成績.根據以上信息,則()A.乙、丁可以知道自己的成績 B.乙、丁可以知道對方的成績C.乙可以知道四人的成績 D.丁可以知道四人的成績3.“”是直線與直線平行的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.橢圓中以點為中點的弦所在直線斜率為()A. B.C. D.5.已知分別是橢圓的左,右焦點,點M是橢圓C上的一點,且的面積為1,則橢圓C的短軸長為()A.1 B.2C. D.46.函數的圖象大致為()A. B.C. D.7.已知函數,則()A. B.0C. D.18.已知雙曲線的焦點為,,其漸近線上橫坐標為的點滿足,則()A. B.C.2 D.49.已知直線與圓相切,則的值是()A. B.C. D.10.已知定義域為R的函數f(x)不是偶函數,則下列命題一定為真命題的是()A.?x∈R,f(-x)≠f(x)B.?x∈R,f(-x)≠-f(x)C?x0∈R,f(-x0)≠f(x0)D.?x0∈R,f(-x0)≠-f(x0)11.已知為等腰直角三角形的直角頂點,以為旋轉軸旋轉一周得到幾何體,是底面圓上的弦,為等邊三角形,則異面直線與所成角的余弦值為()A. B.C. D.12.已知點與不重合的點A,B共線,若以A,B為圓心,2為半徑的兩圓均過點,則的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.與雙曲線有共同的漸近線,并且經過點的雙曲線方程是______14.曲線在點(1,1)處的切線方程為_____15.在空間四邊形ABCD中,AD=2,BC=2,E,F分別是AB,CD的中點,EF=,則異面直線AD與BC所成角的大小為____.16.已知離心率為的橢圓:和離心率為的雙曲線:有公共的焦點,其中為左焦點,P是與在第一象限的公共點.線段的垂直平分線經過坐標原點,則的最小值為_____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(1)若在上單調遞減,求實數a的取值范圍(2)若是方程的兩個不相等的實數根,證明:18.(12分)已知,以點為圓心圓被軸截得的弦長為.(1)求圓的方程;(2)若過點的直線與圓相切,求直線的方程.19.(12分)已知;對任意的恒成立.(1)若是真命題,求m的取值范圍;(2)若是假命題,是真命題,求m的取值范圍.20.(12分)如圖,一個湖的邊界是圓心為的圓,湖的一側有一條直線型公路,湖上有橋(是圓的直徑).規劃在公路上選兩個點、,并修建兩段直線型道路、.規劃要求,線段、上的所有點到點的距離均不小于圓的半徑.已知點到直線的距離分別為和(為垂足),測得,,(單位:百米).(1)若道路與橋垂直,求道路的長;(2)在規劃要求下,點能否選在處?并說明理由.21.(12分)已知的三個頂點的坐標分別為,,(1)求邊AC上的中線所在直線方程;(2)求的面積22.(10分)已知函數(e為自然對數的底數),(),.(1)若直線與函數,的圖象都相切,求a的值;(2)若方程有兩個不同的實數解,求a的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據題意表示出點的坐標,再由直線AB的斜率為,列方程可求出橢圓的離心率【詳解】由題意得,,當時,,得,由題意可得點在第一象限,所以,因為直線AB的斜率為,所以,化簡得,所以,,得(舍去),或,所以離心率,故選:D2、A【解析】分析可知乙、丙的成績中必有位優秀、位良好,結合題意進行推導,可得出結論.【詳解】由于個人中的成績中有位優秀,位良好,甲知道乙、丙的成績,還是不知道自己的成績,則乙、丙的成績必有位優秀、位良好,甲、丁的成績中必有位優秀、位良好,因為給乙看丙的成績,則乙必然知道自己的成績,丁知道甲的成績后,必然知道自己的成績.故選:A.3、C【解析】先根據直線平行的充要條件求出a,然后可得.【詳解】若,則,,顯然平行;若直線,則且,即.故“”是直線與直線平行的充要條件.故選:C4、A【解析】先設出弦的兩端點的坐標,分別代入橢圓方程,兩式相減后整理即可求得弦所在的直線的斜率【詳解】設弦的兩端點為,,代入橢圓得兩式相減得,即,即,即,即,弦所在的直線的斜率為,故選:A5、B【解析】首先分別設,,再根據橢圓的定義和性質列出等式,即可求解橢圓的短軸長.【詳解】設,,所以,即,即,得,短軸長為.故選:B6、A【解析】由題意首先確定函數的奇偶性,然后考查函數在特殊點的函數值排除錯誤選項即可確定函數的圖象.【詳解】由函數的解析式可得:,則函數為奇函數,其圖象關于坐標原點對稱,選項CD錯誤;當時,,選項B錯誤.故選:A.【點睛】函數圖象的識辨可從以下方面入手:(1)從函數的定義域,判斷圖象的左右位置;從函數的值域,判斷圖象的上下位置.(2)從函數的單調性,判斷圖象的變化趨勢.(3)從函數的奇偶性,判斷圖象的對稱性.(4)從函數的特征點,排除不合要求的圖象.利用上述方法排除、篩選選項7、B【解析】先求導,再代入求值.詳解】,所以.故選:B8、B【解析】由題意可設,則,再由,可得,從而可求出的值【詳解】解:雙曲線的漸近線方程為,故設,設,則,因為,所以,即,所以,因為,所以,因為,所以,故選:B9、D【解析】直線與圓相切,直接通過求解即可.【詳解】因為直線與圓相切,所以圓心到直線的距離,所以,.故選:D10、C【解析】利用偶函數的定義和全稱命題的否定分析判斷解答.【詳解】∵定義域為R的函數f(x)不是偶函數,∴?x∈R,f(-x)=f(x)為假命題,∴?x0∈R,f(-x0)≠f(x0)為真命題.故選C【點睛】本題主要考查偶函數的定義和全稱命題的否定,意在考查學生對該知識的理解掌握水平,屬于基礎題.11、B【解析】設,過點作的平行線,與平行的半徑交于點,找出異面直線與所成角,然后通過解三角形可得出所求角的余弦值.【詳解】設,過點作的平行線,與平行的半徑交于點,則,,所以為異面直線與所成的角,在三角形中,,,所以.故選:B.【點睛】本題考查異面直線所成角余弦值的計算,一般通過平移直線的方法找到異面直線所成的角,考查計算能力,屬于中等題.12、D【解析】由題意可得兩點的坐標滿足圓,然后由圓的性質可得當時,弦長最小,當過點時,弦長最長,再根據向量數量積的運算律求解即可【詳解】設點,則以A,B為圓心,2為半徑的兩圓方程分別為和,因為兩圓過,所以和,所以兩點的坐標滿足圓,因為點與不重合的點A,B共線,所以為圓的一條弦,所以當弦長最小時,,因為,半徑為2,所以弦長的最小值為,當過點時,弦長最長為4,因為,所以當弦長最小時,的最大值為,當弦長最大時,的最小值為,所以的取值范圍為,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設雙曲線的方程為,將點代入方程可求的值,從而可得結果【詳解】設與雙曲線有共同的漸近線的雙曲線的方程為,該雙曲線經過點,所求的雙曲線方程為:,整理得故答案為【點睛】本題考查雙曲線的方程與簡單性質,意在考查靈活應用所學知識解答問題的能力,屬于中檔題.與共漸近線的雙曲線方程可設為,只需根據已知條件求出即可.14、【解析】根據導數的幾何意義求出切線的斜率,再根據點斜式可求出結果.【詳解】因為,所以曲線在點(1,1)處的切線的斜率為,所以所求切線方程為:,即.故答案為:.15、【解析】由已知找到異面直線所成角的平面角,再運用余弦定理可得答案.【詳解】解:設BD的中點為O,連接EO,FO,所以,則∠EOF(或其補角)就是異面直線AD,BC所成的角的平面角,又因為EO=AD=1,FO=BC=,EF=.根據余弦定理得=-,所以∠EOF=150°,異面直線AD與BC所成角的大小為30°.故答案為:30°.16、##4.5【解析】設為右焦點,半焦距為,,由題意,,則,所以,從而有,最后利用均值不等式即可求解.【詳解】解:設為右焦點,半焦距為,,由題意,,則,所以,即,故,當且僅當時取等,所以,故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)詳見解析【解析】(1)首先求函數的導數,結合函數的導數與函數單調性的關系,參變分離后,轉化為求函數的最值,即可求得實數的取值范圍;(2)將方程的實數根代入方程,再變形得到,利用分析法,轉化為證明,通過換元,構造函數,轉化為利用導數證明,恒成立.【小問1詳解】,,在上單調遞減,在上恒成立,即,即在,設,,,當時,,函數單調遞增,當時,,函數單調遞減,所以函數的最大值是,所以;【小問2詳解】若是方程兩個不相等的實數根,即又2個不同實數根,且,,得,即,所以,不妨設,則,要證明,只需證明,即證明,即證明,令,,令函數,所以,所以函數在上單調遞減,當時,,所以,,所以,即,即得【點睛】本題考查利用導數的單調性求參數的取值范圍,以及證明不等式,屬于難題,導數中的雙變量問題,往往采用分析法,轉化為函數與不等式的關系,通過構造函數,結合函數的導數,即可證明.18、(1)(2)或【解析】(1)根據垂徑定理,可直接計算出圓的半徑;(2)根據直線的斜率是否存在分類討論,斜率不存在時,可得到直線方程為的直線滿足題意,斜率存在時,利用直線與圓相切,即到直線的距離等于半徑,然后解出關于斜率的方程即可.【小問1詳解】不妨設圓的半徑為,根據垂徑定理,可得:解得:則圓的方程為:【小問2詳解】當直線的斜率不存在時,則有:故此時直線與圓相切,滿足題意當直線的斜率存在時,不妨設直線的斜率為,點的直線的距離為直線的方程為:則有:解得:,此時直線的方程為:綜上可得,直線的方程為:或19、(1)(2)【解析】(1)為真命題,則都為真命題,求出為真命題時的m的取值范圍,并求交集,即為結果;(2)若是假命題,是真命題,則一真一假,分兩種情況進行求解,最后求并集即為結果.【小問1詳解】由題意得:為真命題,則要滿足,解得:,對任意的恒成立,結合開口向上,所以要滿足:,解得:,要保證是真命題,則與取交集,結果為【小問2詳解】是假命題,是真命題,則一真一假,結合(1)中所求,當真假時,與取交集,結果為;當假真時,與取交集,結果為,綜上:m的取值范圍是.20、(1)15(百米)(2)點選在處不滿足規劃要求,理由見解析【解析】(1)建立適當的坐標系,得圓及直線的方程,進而得解.(2)不妨點選在處,求方程并求其與圓的交點,在線段上取點不符合條件,得結論.【小問1詳解】如圖,過作,垂足為.以為坐標原點,直線為軸,建立平面直角坐標系.因為為圓的直徑,,所以圓的方程為.因為,,所以,故直線的方程為,則點,的縱坐標分別為3,從而,,直線的斜率為.因為,所以直線的斜率為,直線的方程為.令,得,,所以.因此道路的長為15(百米).【小問2詳解】若點選在處,連結,可求出點,又,所以線段.由解得或,故不妨取,得到在線段上的點,因為,所以線段上存在點到點的距離小于圓的半徑5.因此點選在處不滿足規劃要求.21、(1)(2)【解析】(1)先求得的中點,由此求得邊AC上的中線所在直線方程.(2)結合點到直線距離公式求得的面積.【小問1詳解】的中點為,所以邊AC上的中線所在直線方程為.【小問2詳解】直線的方程為,到直線的距離為,,所以.22、(1);(2).【解析】(1)根據導數的幾何意義進行求解即可;(2)利用常變量分離法,通過構造新函數,由方程有兩個不同的實數解問題,轉化為兩個函數的圖象有兩個交點問題,利用導數進行求解即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論