




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
上海市華二附中2025屆高二數學第一學期期末聯考試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.世界上最早在理論上計算出“十二平均律”的是我國明代杰出的律學家朱載堉,他當時稱這種律制為“新法密率”十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它前一個單音的頻率的比都相等,且最后一個單音是第一個單音頻率的2倍.已知第十個單音的頻率,則與第四個單音的頻率最接近的是()A.880 B.622C.311 D.2202.已知直線與垂直,則為()A.2 B.C.-2 D.3.數列,,,,…的一個通項公式為()A. B.C. D.4.已知等比數列的前項和為,若,,則()A.20 B.30C.40 D.505.已知一質點的運動方程為,其中的單位為米,的單位為秒,則第1秒末的瞬時速度為()A. B.C. D.6.已知奇函數,則的解集為()A. B.C. D.7.已知平面,的法向量分別為,,且,則()A. B.C. D.8.數列,,,,…,是其第()項A.17 B.18C.19 D.209.已知點,是橢圓:的左、右焦點,是的左頂點,點在過且斜率為的直線上,為等腰三角形,且,則的離心率為()A. B.C. D.10.已知是橢圓兩個焦點,P在橢圓上,,且當時,的面積最大,則橢圓的標準方程為()A. B.C. D.11.在空間直角坐標系中,,,平面的一個法向量為,則平面與平面夾角的正弦值為()A. B.C. D.12.某中學的校友會為感謝學校的教育之恩,準備在學校修建一座四角攢尖的思源亭如圖它的上半部分的輪廓可近似看作一個正四棱錐,已知此正四棱錐的側面與底面所成的二面角為30°,側棱長為米,則以下說法不正確()A.底面邊長為6米 B.體積為立方米C.側面積為平方米 D.側棱與底面所成角的正弦值為二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,,若,則____________.14.如圖是一個無蓋的正方體盒子展開圖,A,B,C,D是展開圖上的四點,BD則在正方體盒子中,AD與平面ABC所成角的正弦值為___________.15.拋物線()上的一點到其焦點F的距離______.16.已知拋物線的焦點為F,過F的直線l交拋物線C于AB兩點,且,則p的值為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某校在全體同學中隨機抽取了100名同學,進行體育鍛煉時間的專項調查.將調查數據按平均每天鍛煉時間的多少(單位:分鐘)分成五組:,,,,,得到如圖所示的頻率分布直方圖.將平均每天體育鍛煉時間不少于60分鐘的同學定義為鍛煉達標,平均每天體育鍛煉時間少于60分鐘的同學定義為鍛煉不達標(1)求a的值,并估計該校同學平均每天體育鍛煉時間的中位數;(2)在樣本中,對平均每天體育鍛煉時間不達標的同學,按分層抽樣的方法抽取6名同學了解不達標的原因,再從這6名同學中隨機抽取2名進行調研,求這2名同學中至少有一名每天體育鍛煉時間(單位:分鐘)在內的概率18.(12分)已知直線,圓.(1)證明:直線l與圓C相交;(2)設l與C的兩個交點分別為A、B,弦AB的中點為M,求點M的軌跡方程;(3)在(2)的條件下,設圓C在點A處的切線為,在點B處的切線為,與的交點為Q.試探究:當m變化時,點Q是否恒在一條定直線上?若是,請求出這條直線的方程;若不是,說明理由.19.(12分)已知空間內不重合的四點A,B,C,D的坐標分別為,,,,且(1)求k,t的值;(2)求點B到直線CD的距離20.(12分)已知命題p:,命題q:.(1)若命題p為真命題,求實數x的取值范圍.(2)若p是q的充分條件,求實數m的取值范圍;21.(12分)已知直線與雙曲線相交于、兩點.(1)當時,求;(2)是否存在實數,使以為直徑的圓經過坐標原點?若存在,求出的值;若不存在,說明理由.22.(10分)已知公差不為零的等差數列的前項和為,,且,,成等比數列(1)求的通項公式;(2)記,求數列的前項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】依題意,每一個單音的頻率構成一個等比數列,由,算出公比,結合,即可求出.【詳解】設第一個單音的頻率為,則最后一個單音的頻率為,由題意知,且每一個單音的頻率構成一個等比數列,設公比為,則,解得:又,則與第四個單音的頻率最接近的是311,故選:C【點睛】關鍵點點睛:本題考查等比數列通項公式的運算,解題的關鍵是分析題意將其轉化為等比數列的知識,考查學生的計算能力,屬于基礎題.2、A【解析】利用一般式中直線垂直的系數關系列式求解.【詳解】因為直線與垂直,故選:A.3、B【解析】根據給定數列,結合選項提供通項公式,將n代入驗證法判斷是否為通項公式.【詳解】A:時,排除;B:數列,,,,…滿足.C:時,排除;D:時,排除;故選:B4、B【解析】根據等比數列前項和的性質進行求解即可.【詳解】因為是等比數列,所以成等比數列,即成等比數列,顯然,故選:B5、C【解析】求出即得解.【詳解】解:由題意得,故質點在第1秒末的瞬時速度為.故選:C6、A【解析】先由求出的值,進而可得的解析式,對求導,利用基本不等式可判斷恒成立,可判斷的單調性,根據單調性脫掉,再解不等式即可.【詳解】的定義域為,因為是奇函數,所以,可得:,所以,經檢驗是奇函數,符合題意,所以,因為,所以,當且僅當即時等號成立,所以在上單調遞增,由可得,即,解得:或,所以的解集為,故選:A.7、D【解析】由題得,解方程即得解.【詳解】解:因為,所以所以,所以,所以.故選:D8、D【解析】根據題意,分析歸納可得該數列可以寫成,,,……,,可得該數列的通項公式,分析可得答案.【詳解】解:根據題意,數列,,,,…,,可寫成,,,……,,對于,即,為該數列的第20項;故選:D.【點睛】此題考查了由數列的項歸納出數列的通項公式,考查歸納能力,屬于基礎題.9、D【解析】設,先求出點,得,化簡即得解【詳解】由題意可知橢圓的焦點在軸上,如圖所示,設,則,∵為等腰三角形,且,∴.過作垂直軸于點,則,∴,,即點.∵點在過點且斜率為的直線上,∴,解得,∴.故選:D【點睛】方法點睛:求橢圓的離心率常用的方法有:(1)公式法(求出橢圓的代入離心率的公式即得解);(2)方程法(通過已知找到關于離心率的方程解方程即得解).10、A【解析】由題意知c=3,當△F1PF2的面積最大時,點P與橢圓在y軸上的頂點重合,即可解出【詳解】由題意知c=3,當△F1PF2的面積最大時,點P與橢圓在y軸上的頂點重合,∵時,△F1PF2的面積最大,∴a==,b=∴橢圓的標準方程為故選:A11、A【解析】根據給定條件求出平面的法向量,再借助空間向量夾角公式即可計算作答.【詳解】設平面的法向量為,則,令,得,令平面與平面夾角為,則,,所以平面與平面夾角的正弦值為.故選:A12、D【解析】連接底面正方形的對角線交于點,連接,則為該正四棱錐的高,即平面,取的中點,連接,則的大小為側面與底面所成,設正方形的邊長為,求出該正四棱錐的底面邊長,斜高和高,然后對選項進行逐一判斷即可.【詳解】連接底面正方形的對角線交于點,連接則為該正四棱錐的高,即平面取的中點,連接,由正四棱錐的性質,可得由分別為的中點,所以,則所以為二面角的平面角,由條件可得設正方形的邊長為,則,又則,解得故選項A正確.所以,則該正四棱錐的體積為,故選項B正確.該正四棱錐的側面積為,故選項C正確.由題意為側棱與底面所成角,則,故選項D不正確.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】首先求出的坐標,再根據向量垂直得到,即可得到方程,解得即可;【詳解】解:因為向量,,,所以向量,因為,所以,即,解得故答案為:14、##【解析】先復原正方體,再構造線面角后可求正弦值.【詳解】復原后的正方體如圖所示,設所在面的正方形的余下的一個頂點為,連接,則平面,故為AD與平面ABC所成角,而,故為AD與平面ABC所成角的正弦值為.故答案為:.15、【解析】將點坐標代入方程中可求得拋物線的方程,從而可得到焦點坐標,進而可求出【詳解】解:為拋物線上一點,即有,,拋物線的方程為,焦點為,即有.故答案為:5.16、3【解析】根據拋物線焦點弦性質求解,或聯立l與拋物線方程,表示出,求其最值即可.【詳解】已知,設,,,則,∵,所以,,∴,當且僅當m=0時,取..故答案為:3.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),中位數為64;(2).【解析】(1)由頻率和為1求參數a,根據中位數的性質,結合頻率直方圖求中位數.(2)首先由分層抽樣求6名同學的分布情況,再應用列舉法求概率.【詳解】(1)由題設,,可得,∴中位數應在之間,令中位數為,則,解得.∴該校同學平均每天體育鍛煉時間的中位數為64.(2)由題設,抽取6名同學中1名在,2名在,3名在,若1名在為,2名在為,3名在為,∴隨機抽取2名的可能情況有共15種,其中至少有一名在內的共12種,∴這2名同學中至少有一名每天體育鍛煉時間(單位:分鐘)在內的概率為.18、(1)證明見解析;(2);(3)點Q恒在直線上,理由見解析.【解析】(1)求出直線過定點,得到在圓內部,故證明直線l與圓C相交;(2)設出點,利用垂直得到等量關系,整理后即為軌跡方程;(3)利用Q、A、B、C四點共圓,得到此圓方程,聯立,求出相交弦的方程,即直線的方程,根據直線過的定點,得到,從而得到點Q恒在直線上.【小問1詳解】證明:直線過定點,代入得:,故在圓內,故直線l與圓C相交;【小問2詳解】圓的圓心為,設點,由垂徑定理得:,即,化簡得:,點M的軌跡方程為:【小問3詳解】設點,由題意得:Q、A、B、C四點共圓,且圓的方程為:,即,與圓C的方程聯立,消去二次項得:,即為直線的方程,因為直線過定點,所以,解得:,所以當m變化時,點Q恒在直線上.【點睛】本題的第三問是稍有難度的,處理方法是根據四點共圓,直徑的端點坐標,求出此圓的方程,與曲線聯立后得到相交弦的方程,是處理此類問題的關鍵.19、(1),(2)【解析】(1)由,可得存在唯一實數,使得,列出方程組,解之即可得解;(2)設直線與所成的角為,求出,再根據點B到直線CD的距離為即可得解【小問1詳解】解:,,因為,所以存在唯一實數,使得,所以,所以,解得,所以,;【小問2詳解】解:,則,設直線與所成的角為,則,所以點B到直線CD的距離為.20、(1);(2).【解析】(1)由一元二次不等式的解法求得的范圍;(2)由p是q的充分條件,轉化為集合的包含關系,從而可求實數m的取值范圍.【詳解】(1)由p:為真,解得.(2)q:,若p是q的充分條件,則是的子集所以.即.21、(1);(2)不存在,理由見解析.【解析】(1)當時,將直線的方程與雙曲線的方程聯立,列出韋達定理,利用弦長公式可求得;(2)假設存在實數,使以為直徑的圓經過坐標原點,設、,將直線與雙曲線的方程聯立,列出韋達定理,由已知可得出,利用平面向量數量積的坐標運
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工程類專業培訓
- 全面剖析公共營養師考試的重點及答案
- 中建材勘測設計有限公司聘企業編工作人員筆試真題2024
- 金屬加工機械制造行業直播電商戰略研究報告
- 金屬制藝術標牌行業直播電商戰略研究報告
- 鋼鐵制旋轉門企業制定與實施新質生產力戰略研究報告
- 退火焊管行業直播電商戰略研究報告
- 非金屬礦及原料制備工程設計行業跨境出海戰略研究報告
- 礦山建筑行業跨境出海戰略研究報告
- 鋁酸鹽系列耐高溫水泥行業跨境出海戰略研究報告
- 2025年世界知識產權日知識競賽考試題庫200題(含答案解析)
- 2025年PC鋼棒分析報告
- 2025年上半年中國電子集團總部16個崗位公開招聘16名易考易錯模擬試題(共500題)試卷后附參考答案
- 2025年安陽職業技術學院單招職業適應性測試題庫學生專用
- 音樂節演出項目承辦合同書
- 新視野大學英語(第四版)讀寫教程4(思政智慧版)課件 B4 Unit 4 Man and nature Section A
- 2025年河南省中招理化生實驗操作考試ABCD考場評分表
- 《文化和旅游領域重大事故隱患判定標準》知識培訓
- 六年級《盼》說課
- 藥企變更與偏差培訓課件
- 2024年寧波市消防救援支隊社會招錄政府專職消防員考試真題
評論
0/150
提交評論