




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆日喀則市重點中學高二數學第一學期期末教學質量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.橢圓:與雙曲線:的離心率之積為2,則雙曲線的漸近線方程為()A. B.C. D.2.已知,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分又不必要條件3.在空間直角坐標系下,點關于軸對稱的點的坐標為()A. B.C. D.4.設aR,則“a=1”是“直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0平行”的A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件5.已知點A、是拋物線:上的兩點,且線段過拋物線的焦點,若的中點到軸的距離為3,則()A.3 B.4C.6 D.86.已知雙曲線的焦點在y軸上,且實半軸長為4,虛半軸長為5,則雙曲線的標準方程為()A.=1 B.=1C.=1 D.=17.已知函數的圖象過點,令.記數列的前n項和為,則()A. B.C. D.8.過原點O作兩條相互垂直的直線分別與橢圓交于A、C與B、D,則四邊形ABCD面積最小值為()A B.C. D.9.執行如圖所示的程序框圖,則輸出的結果為()A. B.C. D.10.已知命題對任意,總有;是方程的根則下列命題為真命題的是A. B.C. D.11.《九章算術》與《幾何原本》并稱現代數學的兩大源泉.在《九章算術》卷五商功篇中介紹了羨除(此處是指三面為等腰梯形,其他兩側面為直角三角形的五面體)體積的求法.在如圖所示的羨除中,平面是鉛垂面,下寬,上寬,深,平面BDEC是水平面,末端寬,無深,長(直線到的距離),則該羨除的體積為()A. B.C. D.12.“冰雹猜想”數列滿足:,,若,則()A.4 B.3C.2 D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線C:的一個焦點坐標為,則其漸近線方程為__________14.橢圓上一點到兩個焦點的距離之和等于,則的標準方程為______.15.直線被圓所截得的弦的長為_____16.直線l過拋物線的焦點F,與拋物線交于A,B兩點,若,則直線l的斜率為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知命題實數滿足成立,命題方程表示焦點在軸上的橢圓,若命題為真,命題或為真,求實數的取值范圍18.(12分)已知函數,(1)討論的單調性;(2)若時,對任意都有恒成立,求實數的最大值19.(12分)如圖,四棱錐中,底面是邊長為2的正方形,,,且,為的中點(1)求平面與平面夾角的余弦值;(2)在線段上是否存在點,使得點到平面的距離為?若存在,確定點的位置;若不存在,請說明理由20.(12分)在棱長為1的正方體ABCD-A1B1C1D1中,求平面ACD1的一個法向量.21.(12分)已知各項均為正數的等差數列中,,且,,構成等比數列的前三項(1)求數列,的通項公式;(2)求數列的前項和22.(10分)如圖,在正三棱柱中,,,,分別為,,的中點(1)證明:(2)求平面與平面所成銳二面角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先求出橢圓的離心率,再由題意得出雙曲線的離心率,根據離心率即可求出漸近線斜率得解.【詳解】橢圓:的離心率為,則,依題意,雙曲線;的離心率為,而,于是得,解得:,所以雙曲線的漸近線方程為故選:C2、B【解析】根據充分條件和必要條件的定義判斷即可求解.【詳解】由可得或,所以由得不出,故充分性不成立,由可得,故必要性成立,所以“”是“”的必要不充分條件,故選:B.3、C【解析】由空間中關于坐標軸對稱點坐標的特征可直接得到結果.【詳解】關于軸對稱的點的坐標不變,坐標變為相反數,關于軸對稱的點為.故選:C.4、A【解析】運用兩直線平行的充要條件得出l1與l2平行時a的值,而后運用充分必要條件的知識來解決即可解:∵當a=1時,直線l1:x+2y﹣1=0與直線l2:x+2y+4=0,兩條直線的斜率都是﹣,截距不相等,得到兩條直線平行,故前者是后者的充分條件,∵當兩條直線平行時,得到,解得a=﹣2,a=1,∴后者不能推出前者,∴前者是后者的充分不必要條件故選A考點:必要條件、充分條件與充要條件的判斷;直線的一般式方程與直線的平行關系5、D【解析】直接根據拋物線焦點弦長公式以及中點坐標公式求結果【詳解】設,,則的中點到軸的距離為,則故選:D6、D【解析】根據雙曲線的性質求解即可.【詳解】雙曲線的焦點在y軸上,且實半軸長為4,虛半軸長為5,可得a=4,b=5,所以雙曲線方程為:=1.故選:D.7、D【解析】由已知條件推導出,.由此利用裂項求和法能求出【詳解】解:由,可得,解得,則.∴,故選:【點睛】本題考查了函數的性質、數列的“裂項求和”,考查了推理能力與計算能力,屬于中檔題8、A【解析】直線AC、BD與坐標軸重合時求出四邊形面積,與坐標軸不重合求出四邊形ABCD面積最小值,再比較大小即可作答.【詳解】因四邊形ABCD的兩條對角線互相垂直,由橢圓性質知,四邊形ABCD的四個頂點為橢圓頂點時,而,四邊形ABCD的面積,當直線AC斜率存在且不0時,設其方程為,由消去y得:,設,則,,直線BD方程為,同理得:,則有,當且僅當,即或時取“=”,而,所以四邊形ABCD面積最小值為.故選:A9、B【解析】寫出每次循環的結果,即可得到答案.【詳解】當時,,,,;,此時,退出循環,輸出的的為.故選:B【點睛】本題考查程序框圖的應用,此類題要注意何時循環結束,建議數據不大時采用寫出來的辦法,是一道容易題.10、A【解析】由絕對值的意義可知命題p為真命題;由于,所以命題q為假命題;因此為假命題,為真命題,“且”字聯結的命題只有當兩命題都真時才是真命題,所以答案選A11、C【解析】在,上分別取點,,使得,連接,,,把幾何體分割成一個三棱柱和一個四棱錐,然后由棱柱、棱錐體積公式計算【詳解】如圖,在,上分別取點,,使得,連接,,,則三棱柱是斜三棱柱,該羨除的體積三棱柱四棱錐.故選:C【點睛】思路點睛:本題考查求空間幾何體的體積,解題思路是觀察幾何體的結構特征,合理分割,將不規則幾何體體積的計算轉化為錐體、柱體體積的計算.考查了空間想象能力、邏輯思維能力、運算求解能力12、A【解析】根據題意分別假設為奇數、偶數的情況,求出對應的即可.【詳解】由題意知,因為,若為奇數時,,與為奇數矛盾,不符合題意;若為偶數時,,可得,符合題意.不符合故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據雙曲線的定義由焦點坐標求出,即可得到雙曲線方程,從而得到其漸近線方程;【詳解】解:因為雙曲線C:的一個焦點坐標為,即,,又,所以,所以雙曲線方程為,所以雙曲線的漸近線為;故答案為:14、【解析】根據橢圓定義求出其長半軸長,再結合焦點坐標即可計算作答.【詳解】因橢圓上一點到兩個焦點的距離之和等于,則該橢圓長半軸長,而半焦距,于是得短半軸長b,有,所以的標準方程為.故答案為:15、【解析】圓轉化為標準式方程,圓心到直線的距離為,圓的半徑為,因此所求弦長為考點:1.圓的方程;2.直線被圓截得的弦長的求法;16、【解析】如圖,設,兩點的拋物線的準線上的射影分別為,,過作的垂線,在三角形中,等于直線的傾斜角,其正切值即為值,利用在直角三角形中,求得,從而得出直線的斜率【詳解】解:如圖,當在第一象限時,設,兩點的拋物線的準線上的射影分別為,,過作的垂線,在三角形中,等于直線的傾斜角,其正切值即為值,由拋物線的定義可知:設,則,,,在直角三角形中,,所以,則直線的斜率;當在第四象限時,同理可得,直線的斜率,綜上可得直線l的斜率為;故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、或【解析】首先根據復數的乘方及復數模的計算公式求出命題為真時參數的取值范圍,再根據橢圓的性質求出命題為真時參數的取值范圍,依題意為假,為真,即可求出參數的取值范圍;【詳解】解:因為,,,,所以,所以,所以為真時,因為方程表示焦點在軸上的橢圓,所以,所以,即為真時,所以為假時參數的取值范圍為或,因為命題為真,命題或為真,所以為假,為真,或18、(1)答案見解析;(2).【解析】(1)利用導數與單調性的關系分類討論即得;(2)由題可得在上恒成立,構造函數,利用導數求函數的最值即可.【小問1詳解】的定義域為,且當時,顯然,在定義域上單調遞增;當時,令,得則有:極大值即在上單調遞增,在上單調遞減,綜上所述,當時,在定義域上單調遞增;當時,在上單調遞增,在上單調遞減.【小問2詳解】當時,,對于滿足恒成立,在上恒成立,令,只需∴,,,令,則,在上單調遞增,又,,存在唯一的,使得,即,兩邊取自然對數得,極小值,則的最大值為19、(1)(2)存在,點為線段的靠近點的三等分點【解析】(1)根據題意證得平面,進而證得平面,得到平面,以點為坐標原點,,,所在直線分別為軸、軸和軸建立空間直角坐標系,求得平面和平面的法向量,結合向量的夾角公式,即可求解;(2)設點,求得平面的法向量為,結合向量的距離公式列出方程,求得的值,即可得到答案.【小問1詳解】解:因為四邊形為正方形,則,,由,,,所以平面,因為平面,所以,又由,,,所以平面,又因為平面,所以,因為且平面,所以平面,由平面,且,不妨以點為坐標原點,,,所在直線分別為軸、軸和軸建立空間直角坐標系,如圖所示,則,,,,可得,,,設平面的法向量為,則,取,可得,所以,易得平面的法向量為,則,由平面與平面夾角為銳角,所以平面與平面夾角的余弦值【小問2詳解】解:設點,可得,,設平面的法向量為,則,取,可得,所以,所以點到平面的距離為,解得,即或因為,所以故當點為線段的靠近點的三等分點時,點到平面的距離為.20、【解析】建立空間直角坐標系,由向量法求法向量即可.【詳解】如圖,建立空間直角坐標系,則設平面ACD1的法向量.,又為平面ACD1的一個法向量,化簡得令x=1,得y=z=1.平面ACD1的一個法向量.【點睛】本題主要考查了求平面的法向量,屬于中檔題.21、(1);(2)【解析】(1)設等差數列公差為d,利用基本量代換列方程組求出的通項公式,進而求出的首項和公比,即可求出的通項公式;(2)利用分組求和法直接求和.【小問1詳解】設等差數列的公差為d,則由已知得:,即,又,解得或(舍去),所以.,又,,,;【小問2詳解】,.22、(1)證明見解析(2)【解析】(1)由已知,以為坐標原點,建立
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工程設計實訓體系構建
- 2025藥店收費合同示范文本
- 2025年珠海市個人房產交易合同
- 2025防火門購銷合同范本
- 2025電商平臺會員商務合作合同樣本
- 2025年卡地亞物業管理委托合同
- 室內模型設計方案
- 高中歷史教師課標考試模擬試卷附答案
- 2025中文貿易合同樣本
- 手術室無菌技術護理查房
- 2025年人教版小學數學二年級下冊期末考試卷(帶答案解析)
- 西師大版小學五年級 數學(下)期末測試題(含答案)
- 化工工藝原理考試題庫梳理
- 定金款管理制度
- 光伏電站安全培訓
- GB/T 37027-2025網絡安全技術網絡攻擊和網絡攻擊事件判定準則
- 2025年江蘇南通蘇北七市高三二模高考物理試卷(含答案詳解)
- 2024年藥理學考試真題回顧試題及答案
- 2025年軍隊文職(司機類)核心知識點備考題庫(含答案)
- 2025年深圳二模考試試題及答案
- (一模)臨沂市2025屆高三高考第一次模擬考試生物試卷(含標準答案)
評論
0/150
提交評論