版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西省育才中學2025屆高二數學第一學期期末經典模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖所示,已知三棱錐,點,分別為,的中點,且,,,用,,表示,則等于()A. B.C. D.2.若向量則()A. B.3C. D.3.已知空間向量,,,下列命題中正確的個數是()①若與共線,與共線,則與共線;②若,,非零且共面,則它們所在的直線共面;⑧若,,不共面,那么對任意一個空間向量,存在唯一有序實數組,使得;④若,不共線,向量,則可以構成空間的一個基底.A.0 B.1C.2 D.34.設拋物線C:的焦點為,準線為.是拋物線C上異于的一點,過作于,則線段的垂直平分線()A.經過點 B.經過點C.平行于直線 D.垂直于直線5.已知F是雙曲線的右焦點,過F且垂直于x軸的直線交E于A,B兩點,若E的漸近線上恰好存在四個點,,,,使得,則E的離心率的取值范圍是()A. B.C. D.6.在空間直角坐標系中,點關于平面的對稱點為,則()A.-4 B.-10C.4 D.107.等比數列的各項均為正數,已知向量,,且,則A.12 B.10C.5 D.8.已知圓,圓C2:x2+y2-x-4y+7=0,則“a=1”是“兩圓內切”的()A.充分必要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件9.已知拋物線C:,則過拋物線C的焦點,弦長為整數且不超過2022的直線的條數是()A.4037 B.4044C.2019 D.202210.數列滿足,,,則數列的前8項和為()A.25 B.26C.27 D.2811.過橢圓的左焦點作弦,則最短弦的長為()A. B.2C. D.412.已知函數是區間上的可導函數,且導函數為,則“對任意的,”是“在上為增函數”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在直三棱柱中,,為中點,則平面與平面夾角的正切值為___________.14.若無論實數取何值,直線與圓恒有兩個公共點,則實數的取值范圍為___________.15.設函數,,若存在,成立,則實數的取值范圍為__________.16.記為等差數列的前n項和.若,則_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)要設計一種圓柱形、容積為500mL的一體化易拉罐金屬包裝,如何設計才能使得總成本最低?18.(12分)已知等比數列的前項和為,且.(1)求數列的通項公式;(2)令,求數列的前項和.19.(12分)已知函數.(1)當時,求函數的極值;(2)若對,恒成立,求的取值范圍.20.(12分)在中,內角的對邊分別是,且(1)求角的大小(2)若,且,求的面積21.(12分)求滿足下列條件的曲線的方程:(1)離心率為,長軸長為6的橢圓的標準方程(2)與橢圓有相同焦點,且經過點的雙曲線的標準方程22.(10分)已知與定點,的距離比為的點P的軌跡為曲線C,過點的直線l與曲線C交于M,N兩點.(1)求曲線C的軌跡方程;(2)若,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】連接,先根據已知條件表示出,再根據求得結果.【詳解】連接,如下圖所示:因為為的中點,所以,又因為為的中點,所以,所以,故選:A.2、D【解析】先求得,然后根據空間向量模的坐標運算求得【詳解】由于向量,,所以.故故選:D3、B【解析】用向量共線或共面的基本定理即可判斷.【詳解】若與,與共線,,則不能判定,故①錯誤;若非零向量共面,則向量可以在一個與組成的平面平行的平面上,故②錯誤;不共面,意味著它們都是非零向量,可以作為一組基底,故③正確;,∴與共面,故不能組成一個基底,故④錯誤;故選:C.4、A【解析】依據題意作出焦點在軸上的開口向右的拋物線,根據垂直平分線的定義和拋物線的定義可知,線段的垂直平分線經過點,即可求解.【詳解】如圖所示:因為線段的垂直平分線上的點到的距離相等,又點在拋物線上,根據定義可知,,所以線段的垂直平分線經過點.故選:A.5、D【解析】由題意以AB為直徑的圓M與雙曲線E的漸近線有四個不同的交點,則必有,又當圓M經過原點時此時以AB為直徑的圓M上與雙曲線E的漸近線有三個不同的交點,不滿足,從而得出答案.【詳解】由題意,由得,雙曲線的漸近線方程為所以,由,可知,,,在以AB為直徑的圓M上,圓的半徑為即以AB為直徑的圓M與雙曲線E的漸近線有四個不同的交點當圓M與漸近線相切時,圓心到漸近線的距離,則必有,即,則雙曲線E的離心率,所以又當圓M經過原點時,,解得E的離心率為,此時以AB為直徑圓M與雙曲線E的漸近線有三個不同的交點,不滿足條件.所以E的離心率的取值范圍是.故選:D6、A【解析】根據關于平面對稱的點的規律:橫坐標、縱坐標保持不變,豎坐標變為它的相反數,即可求出點關于平面的對稱點的坐標,再利用向量的坐標運算求.【詳解】解:由題意,關于平面對稱的點橫坐標、縱坐標保持不變,豎坐標變為它的相反數,從而有點關于對稱的點的坐標為(2,?1,-3).故選:A【點睛】本題以空間直角坐標系為載體,考查點關于面的對稱,考查數量積的坐標運算,屬于基礎題7、C【解析】利用數量積運算性質、等比數列的性質及其對數運算性質即可得出【詳解】向量=(,),=(,),且?=4,∴+=4,由等比數列的性質可得:=……===2,則log2(?)=故選C【點睛】本題考查數量積運算性質、等比數列的性質及其對數運算性質,考查推理能力與計算能力,屬于中檔題8、B【解析】先得出圓的圓心和半徑,求出兩圓心間的距離,半徑之差,根據兩圓內切得出方程,從而得出答案.【詳解】圓的圓心半徑的圓心半徑兩圓心之間的距離為兩圓的半徑之差為當兩圓內切時,,解得或所以當,可得兩圓內切,當兩圓內切時,不能得出(可能)故“”是“兩圓內切”的充分不必要條件故選:B9、A【解析】根據已知條件,結合拋物線的性質,先求出過焦點的最短弦長,再結合拋物線的對稱性,即可求解【詳解】∵拋物線C:,即,由拋物線的性質可得,過拋物線焦點中,長度最短的為垂直于y軸的那條弦,則過拋物線C的焦點,長度最短的弦的長為,由拋物線的對稱性可得,弦長在5到2022之間的有共有條,故弦長為整數且不超過2022的直線的條數是故選:A10、C【解析】根據通項公式及求出,從而求出前8項和.【詳解】當時,,當時,,當時,,當時,,當時,,當時,,則數列的前8項和為.故選:C11、A【解析】求出橢圓的通徑,即可得到結果【詳解】過橢圓的左焦點作弦,則最短弦的長為橢圓的通徑:故選:A12、A【解析】根據充分條件與必要條件的概念,由導函數的正負與函數單調性之間關系,即可得出結果.【詳解】因為函數是區間上的可導函數,且導函數為,若“對任意的,”,則在上為增函數;若在上為增函數,則對任意的恒成立,即由“對任意的,”能推出“在上為增函數”;由“在上為增函數”不能推出“對任意的,”,因此“對任意的,”是“在上為增函數”的充分不必要條件.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由條件可得均為等腰直角三角形,從而,先證明平面,從而,即得到為平面與平面夾角的平面角,從而可求解.【詳解】由,則,則在直三棱柱中,平面,又平面,則又,所以平面平面,所以由由條件可得均為等腰直角三角形,則所以,即,由所以平面,又平面所以,即為平面與平面夾角的平面角.在直角中,所以故答案為:14、【解析】根據點到直線的距離公式得到,根據,解不等式得到答案.【詳解】依題意有圓心到直線的距離,即,又無論取何值,,故,故.故答案:15、【解析】由不等式分離參數,令,則求即可【詳解】由,得,令,則當時,;當時,;所以在上單調遞減,在上單調遞增,故由于存在,成立,則故答案為:16、5【解析】根據等差數列前項和的公式及等差數列的性質即可得出答案.【詳解】解:,所以.故答案為:5.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、當圓柱底面半徑為,高為時,總成本最底.【解析】設圓柱底面半徑為cm,高為cm,圓柱表面積為Scm2,進而根據體積得到,然后求出表面積,進而運用導數的方法求得表面積的最小值,此時成本最小.【詳解】設圓柱底面半徑為cm,高為cm,圓柱表面積為Scm2,每平方厘米金屬包裝造價為元,由題意得:,則,表面積造價,,令,得,令,得,的單調遞減區間為,遞增區間為,當圓柱底面半徑為,高為時,總成本最底.18、(1)(2)【解析】(1)根據得到,再結合為等比數列求出首項,進而求得數列的通項公式;(2)由(1)求得數列的通項公式,進而利用公式法即可求出【小問1詳解】解:(1),,當時,,即,又,為等比數列,所以,,數列的通項公式為【小問2詳解】(2)由(1)知,則,數列的前項和19、(1)極小值為,無極大值;(2).【解析】(1)對函數進行求導、列表、判斷函數的單調性,最后根據函數極值的定義進行求解即可;(2)對進行常變量分離,然后構造新函數,對新函數進行求導,判斷其單調性,進而求出新函數的最值,最后根據題意求出的取值范圍即可.【詳解】(1)函數的定義域為,當時,.由,得.當變化時,,的變化情況如下表-0+單調遞減極小值單調遞增所以在上單調遞減,上單調遞增,所以函數的極小值為,無極大值.(2)對,恒成立,即對,恒成立.令,則.由得,當時,,單調遞增;當時,,單調遞減,所以,因此.所以的取值范圍是.【點睛】本題考查了利用導數研究函數的單調性、極值、最值,考查了構造函數法、常變量分離法,考查了數學運算能力和分類討論思想.20、(1);(2)【解析】(1)根據,通過余弦定理求解.(2)根據,通過正弦定理,把角轉化為邊得,再根據,得.再代入的面積公式求解.【詳解】(1)∵,∴由余弦定理得,又,∴.(2)∵,∴由正弦定理得,∵,∴,又,∴∴面積【點睛】本題主要考查余弦定理和正弦定理的應用,還考查了運算求解的能力,屬于中檔題.21、(1)或;(2)【解析】(1)根據題意,由橢圓的幾何性質可得a、c的值,計算可得b的值,討論橢圓焦點的位置,求出橢圓的標準方程,即可得答案;(2)根據題意,求出橢圓的焦點坐標,進而可以設雙曲線的方程為,分析可得和,解可得a、b的值,即可得答案【詳解】解:(1)根據題意,要求橢圓的長軸長為6,離心率為,則,,解可得:,;則,若橢圓的焦點在x軸上,其方程為,若橢圓的焦點在y軸上,其方程為,綜合可得:橢圓的標準方程為或;(2)根據題意,橢圓的焦點為和,故要求雙曲線的方程為,且,則有,又由雙曲線經過經過點,則有,,聯立可得:,故雙曲線方程為:【點睛】本題考查橢圓、雙曲線的標準方程的求法,涉及橢圓、雙曲線的幾何性質,屬于基礎題22、(1)(2)或【解析】(1)設曲線上的任意一點,由題意可得,化簡即可得出(2)分直線的斜率不存在與存在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 緊跟時代步伐的農業職業經理人考試試題及答案
- 地槽電纜敷設施工方案
- 2024年項目管理資格特點試題及答案
- 2025年資料員-崗位技能(資料員)證模擬考試題及答案
- 硅冶煉與可持續發展考核試卷
- 銀行從業資格證考試綜合能力評估試題及答案
- 電氣工程與智能電網考核試卷
- 2024年項目管理資格考試的通識知識點試題及答案
- 橡膠制品在建筑領域的應用考核試卷
- 窗簾面料的智能抗菌特性考核試卷
- 2025年長春汽車職業技術大學單招職業技能測試題庫參考答案
- 心理健康案例報告-青少年網癮的成因及對策
- 湖北省襄陽襄城區四校聯考2025屆中考化學模擬試卷含解析
- 幼兒園獲獎公開課:大班語言《我是霸王龍》微課件
- 2025 年意識形態工作計劃(方案)
- 2025年河南省煙草專賣局(公司)高校畢業生招聘180人高頻重點模擬試卷提升(共500題附帶答案詳解)
- 2025年江蘇省張家港市文化中心管委辦招聘3人歷年高頻重點模擬試卷提升(共500題附帶答案詳解)
- 2025年河南應用技術職業學院單招職業適應性測試題庫含答案
- 私募股權投資風險識別技術-深度研究
- 衛生院、社區衛生服務中心公民個人信息安全管理制度
- 微訓練 一文多考 備考高效之小說《十八歲的李響》蔡楠-教師版
評論
0/150
提交評論