




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省贛州市會昌中學、寧師中學2025屆高二上數學期末考試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線的焦點為,在拋物線上有一點,滿足,則的中點到軸的距離為()A. B.C. D.2.若在1和16中間插入3個數,使這5個數成等比數列,則公比為()A. B.2C. D.43.已知、分別為雙曲線的左、右焦點,且,點P為雙曲線右支一點,為的內心,若成立,給出下列結論:①點的橫坐標為定值a;②離心率;③;④當軸時,上述結論正確的是()A.①② B.②③C.①②③ D.②③④4.用1,2,3,4這4個數字可寫出()個沒有重復數字的三位數A.24 B.12C.81 D.645.若拋物線上的點到其焦點的距離是到軸距離的倍,則等于A. B.1C. D.26.原點到直線的距離的最大值為()A. B.C. D.7.若雙曲線(,)的焦距為,且漸近線經過點,則此雙曲線的方程為()A. B.C. D.8.計算復數:()A. B.C. D.9.設雙曲線與橢圓:有公共焦點,.若雙曲線經過點,設為雙曲線與橢圓的一個交點,則的余弦值為()A. B.C. D.10.已知函數,則()A.函數在上單調遞增B.函數上有兩個零點C.函數有極大值16D.函數有最小值11.已知平面的一個法向量為,且,則點A到平面的距離為()A. B.C. D.112.設拋物線的焦點為,準線與軸的交點為,是上一點,若,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.教育部門對某校學生的閱讀素養進行調研,在該校隨機抽取了100名學生進行百分制檢測,現將所得的成績按照,分成6組,并根據所得數據作出了頻率分布直方圖(如圖所示),則成績在這組的學生人數是________.14.雙曲線的焦點在圓上,圓O與雙曲線C的漸近線在第一、四象限分別交于P,Q兩點滿足(其中O是坐標原點),則的面積是_________15.橢圓與雙曲線有公共焦點,設橢圓與雙曲線在第一象限內交于點,橢圓與雙曲線的離心率分別為為坐標原點,,則的取值范圍是___________.16.已知關于的不等式恒成立,則實數的取值范圍是___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知直線過點(1)若直線與直線垂直,求直線的方程;(2)若直線在兩坐標軸的截距相等,求直線的方程18.(12分)已知等比數列的首項,公比,在中每相鄰兩項之間都插入3個正數,使它們和原數列的數一起構成一個新的等比數列.(1)求數列的通項公式;(2)記數列前n項的乘積為,試問:是否有最大值?如果是,請求出此時n以及最大值;若不是,請說明理由.19.(12分)如圖,在梯形中,,四邊形為矩形,且平面,.(1)求證:;(2)點在線段(不含端點)上運動,設直線與平面所成角為,求的取值范圍.20.(12分)如圖,在棱長為2的正方體中,,分別為線段,的中點.(1)求點到平面的距離;(2)求平面與平面夾角的余弦值.21.(12分)在正方體中,E,F分別是,的中點(1)求證:∥平面;(2)求平面與平面EDC所成的二面角的正弦值22.(10分)如圖,一個湖的邊界是圓心為的圓,湖的一側有一條直線型公路,湖上有橋(是圓的直徑).規劃在公路上選兩個點、,并修建兩段直線型道路、.規劃要求,線段、上的所有點到點的距離均不小于圓的半徑.已知點到直線的距離分別為和(為垂足),測得,,(單位:百米).(1)若道路與橋垂直,求道路的長;(2)在規劃要求下,點能否選在處?并說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】設點,利用拋物線的定義求出的值,可求得點的橫坐標,即可得解.【詳解】設點,易知拋物線的焦點為,由拋物線的定義可得,得,所以,點的橫坐標為,故點到軸的距離為.故選:A.2、A【解析】根據等比數列的通項得:,從而可求出.【詳解】解:成等比數列,∴根據等比數列的通項得:,,故選:A.3、C【解析】利用雙曲線的定義、幾何性質以及題意對選項逐個分析判斷即可【詳解】對于①,設內切圓與的切點分別為,則由切線長定理可得,因為,,所以,所以點的坐標為,所以點的橫坐標為定值a,所以①正確,對于②,因為,所以,化簡得,即,解得,因為,所以,所以②正確,對于③,設的內切圓半徑為,由雙曲線的定義可得,,因為,,所以,所以,所以③正確,對于④,當軸時,可得,此時,所以,所以④錯誤,故選:C4、A【解析】由題意,從4個數中選出3個數出來全排列即可.【詳解】由題意,從4個數中選出3個數出來全排列,共可寫出個三位數.故選:A5、D【解析】根據拋物線的定義及題意可知3x0=x0+,得出x0求得p,即可得答案【詳解】由題意,3x0=x0+,∴x0=∴∵p>0,∴p=2.故選D【點睛】本題主要考查了拋物線的定義和性質.考查了考生對拋物線定義的掌握和靈活應用,屬于基礎題6、C【解析】求出直線過的定點,當時,原點到直線距離最大,則可求出原點到直線距離的最大值;【詳解】因為可化為,所以直線過直線與直線交點,聯立可得所以直線過定點,當時,原點到直線距離最大,最大距離即為,此時最大值為,故選:C.7、B【解析】根據題意得到,,解得答案.【詳解】雙曲線(,)的焦距為,故,.且漸近線經過點,故,故,雙曲線方程為:.故選:.【點睛】本題考查了雙曲線方程,意在考查學生對于雙曲線基本知識的掌握情況.8、D【解析】直接利用復數代數形式的乘除運算化簡可得結論.【詳解】故選:D.9、A【解析】求出雙曲線方程,根據橢圓和雙曲線的第一定義求出的長度,從而根據余弦定理求出的余弦值【詳解】由題得,雙曲線中,所以,雙曲線方程為:,假設在第一象限,根據橢圓和雙曲線的定義可得:,解得:,,所以根據余弦定理,故選:A10、C【解析】對求導,研究的單調性以及極值,再結合選項即可得到答案.【詳解】,由,得或,由,得,所以在上遞增,在上遞減,在上遞增,所以極大值為,極小值為,所以有3個零點,且無最小值.故選:C11、B【解析】直接由點面距離的向量公式就可求出【詳解】∵,∴,又平面的一個法向量為,∴點A到平面的距離為故選:B12、D【解析】求出拋物線的準線方程,可得出點的坐標,利用拋物線的定義可求得點的坐標,再利用兩點間的距離公式可求得結果.【詳解】易知拋物線焦點為,準線方程為,可得準線與軸的交點,設點,由拋物線的性質,,可得,所以,,解得,即點,所以.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、20【解析】根據頻率分布直方圖求出成績在這組的頻率,從而可得出答案.【詳解】解:由頻率分布直方圖可知,成績在這組的頻率為,所以成績在這組的學生人數為(人).故答案為:20.14、【解析】根據雙曲線的焦點在圓上可求出的值,設線段與軸的交點坐標為,進而根據求出的坐標,代入圓中,求出的值,即可求出結果.【詳解】因為雙曲線的焦點在圓上,所以,設線段與軸的交點坐標為,結合雙曲線與圓的對稱性可知為線段的中點,又因為,即,且,則,又因為直線的方程為,所以,又因為在圓上,所以,又因為,則,所以,從而,故,故答案為:.15、【解析】根據橢圓和雙曲線得定義求得,再根據,可得,從而有,求出的范圍,根據,結合基本不等式即可得出答案.【詳解】解:設,則有,所以,即,又因為,所以,所以,即,則,由,得,所以,所以,則,由,得,因為,當且僅當,即時,取等號,因為,所以,所以,即,所以的取值范圍是.故答案為:.16、【解析】參變分離,可得,設,求導分析單調性,可得,即得解【詳解】因為,所以不等式可化為,設,則,設,由于故在上單調遞增,且,則當時,,單調遞減;當時,,單調遞增,所以,則,即.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)由兩條直線垂直可設直線的方程為,將點的坐標代入計算即可;(2)當直線過原點時,根據直線的點斜式方程即可得出結果;當直線不過原點時可設直線的方程為,將點的坐標代入計算即可.【小問1詳解】解:因為直線與直線垂直所以,設直線的方程為,因為直線過點,所以,解得,所以直線的方程為【小問2詳解】解:當直線過原點時,斜率為,由點斜式求得直線的方程是,即當直線不過原點時,設直線的方程為,把點代入方程得,所以直線的方程是綜上,所求直線的方程為或18、(1)(2)當或時,有最大值.【解析】(1)利用等比數列通項公式求解即可;(2)求出數列的前n項的乘積為,利用二次函數的性質求最值即可.【小問1詳解】由已知得,數列首項,,設數列的公比為,即∴即,【小問2詳解】,即當或5時,有最大值.19、(1)證明見解析(2)【解析】(1)過作,垂足為,利用正余弦定理可證,再利用線線垂足證明線面垂直,進而可得證;(2)以為坐標原點,分別以,,所在直線為,,軸建立空間直角坐標系,利用坐標法求線面夾角的正弦值.【小問1詳解】證明:由已知可得四邊形是等腰梯形,過作,垂足為,則,在中,,則,可得,在中,由余弦定理可得,,則,,又平面,平面,,,,平面,平面,又為矩形,,則平面,而平面,;【小問2詳解】平面,且,以為坐標原點,分別以,,所在直線為,,軸建立空間直角坐標系,則,,,,,設,則,又,設平面的法向量為,由,取,得,又,,,,則.20、(1);(2).【解析】(1)以為原點,為軸,為軸,為軸,建立空間直角坐標系.可根據題意寫出各個點的坐標,進而求出平面的法向量和的坐標,點到平面的距離.計算即可求出答案.(2)由(1)知平面的法向量,在把平面的法向量表示出來,平面與平面夾角的余弦值為,計算即可求出答案.【小問1詳解】以為原點,為軸,為軸,為軸,建立如下圖所示的空間直角坐標系.由于正方體的棱長為2和,分別為線段,的中點知,.設平面的法向量為..則..故點到平面的距離.【小問2詳解】平面的法向量,平面與平面夾角的余弦值.21、(1)見解析;(2).【解析】(1)連接,,連接,證明CE∥即可;(2)建立空間直角坐標系,求出平面與平面EDC的法向量,利用向量法求二面角的正弦值.【小問1詳解】如圖,連接,,連接,∵BC∥且BC=,∴四邊形是平行四邊形,∴∥且,∵E是中點,G是中點,∴∥CG且,∴四邊形是平行四邊形,∴∥CE,∵平面,CE平面,∴CE∥平面;【小問2詳解】如圖建立空間直角坐標系,設正方體的棱長為2,則,則,設平面的法向量為,則,取;設平面EDC的法向量為,則,取,則;設平面與平面EDC所成的二面角的平面角為α,則,∴22、(1)15(百米)(2)點選在處不滿足規劃要求,理由見解析【解析】(1)建立適當的坐標系,得圓及直線的方程,進而得解.(2)不妨點選在處,求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2026學年甘井子區三上數學期末聯考模擬試題含解析
- 2025-2026學年東方市三上數學期末模擬試題含解析
- 2024年遼寧省本溪市本溪滿族自治縣數學三上期末監測試題含解析
- 八年級生物-用藥常識-人教新課標版課件
- 行政管理中的科技支持方案的試題及答案
- 2025年跨文化管理的案例分析試題及答案
- 自考行政管理期末復習策略與試題及答案
- 深入中國文化概論考試試題答案
- 抗抑郁藥物的應用與效果評估試題及答案
- 2025年執業藥師應試寶典試題及答案
- REACH法規培訓教材課件
- 婚前醫學檢查證明
- 巴氏染色-臨床實踐能力訓練考核標準
- 婦科經帶胎產雜99方方歌講解學習
- 重慶郵電大學本科畢業設計(論文)參考模板-2020版
- 20XX-煙草車輛運輸方案計劃
- 蘇教版二年級下冊數學競賽試卷
- CRH380B動車組電氣系統綜述綜述
- 晶體幾何基礎
- 作業準備驗證及停工后驗證規定
- 控制電纜敷設、接線施工方案
評論
0/150
提交評論