陜西省漢濱區2025屆高二數學第一學期期末質量跟蹤監視試題含解析_第1頁
陜西省漢濱區2025屆高二數學第一學期期末質量跟蹤監視試題含解析_第2頁
陜西省漢濱區2025屆高二數學第一學期期末質量跟蹤監視試題含解析_第3頁
陜西省漢濱區2025屆高二數學第一學期期末質量跟蹤監視試題含解析_第4頁
陜西省漢濱區2025屆高二數學第一學期期末質量跟蹤監視試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

陜西省漢濱區2025屆高二數學第一學期期末質量跟蹤監視試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設各項均為正項的數列滿足,,若,且數列的前項和為,則()A. B.C.5 D.62.已知中,角,,的對邊分別為,,,且,,成等比數列,則這個三角形的形狀是()A.直角三角形 B.等邊三角形C.等腰直角三角形 D.鈍角三角形3.設拋物線的焦點為,點為拋物線上一點,點坐標為,則的最小值為()A. B.C. D.4.命題“存在,使得”為真命題的一個充分不必要條件是()A. B.C. D.5.在空間直角坐標系下,點關于平面的對稱點的坐標為()A. B.C. D.6.已知橢圓C:的左,右焦點,過原點的直線l與橢圓C相交于M,N兩點.其中M在第一象限.,則橢圓C的離心率的取值范圍為()A. B.C. D.7.已知等比數列滿足,則()A.168 B.210C.672 D.10508.甲乙兩個雷達獨立工作,它們發現飛行目標的概率分別是0.9和0.8,飛行目標被雷達發現的概率為()A.0.72 B.0.26C.0.7 D.0.989.下列結論中正確的個數為()①,;②;③A.0 B.1C.2 D.310.定義“等方差數列”:如果一個數列從第二項起,每一項的平方與它的前一項的平方的差都等于同一個常數,那么這個數列就叫作等方差數列,這個常數叫作該數列的方公差.設是由正數組成的等方差數列,且方公差為4,,則數列的前24項和為()A. B.3C. D.611.南宋數學家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數到與一般的等差數列不同,前后兩項之差并不相等,但是逐項差數之差或者高次差成等差數列.如數列1,3,6,10,前后兩項之差組成新數列2,3,4,新數列2,3,4為等差數列、這樣的數列稱為二階等差數列.現有二階等差數列,其前7項分別為2,3,5,8,12,17,23則該數列的第100項為()A.4862 B.4962C.4852 D.495212.已知的三個頂點是,,,則邊上的高所在的直線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,,都為正實數,,且,,成等比數列,則的最小值為______14.若方程表示的曲線是圓,則實數的k取值范圍是___________.15.直線恒過定點,則定點坐標為________16.已知方程的兩根為和5,則不等式的解集是______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,平面平面,,,,,(Ⅰ)求證:;(Ⅱ)求二面角的余弦值;(Ⅲ)若點在棱上,且平面,求線段的長18.(12分)已知橢圓經過點,左焦點為.(Ⅰ)求橢圓的方程;(Ⅱ)若是橢圓的右頂點,過點且斜率為的直線交橢圓于兩點,求的面積.19.(12分)設數列的前項和為,且.(1)求數列的通項公式;(2)記,數列的前項和為,求不等式的解集.20.(12分)已知點,,線段是圓的直徑.(1)求圓的方程;(2)過點的直線與圓相交于,兩點,且,求直線的方程.21.(12分)已知等差數列中,,,等比數列中,,(1)求數列的通項公式;(2)記,求的最小值22.(10分)已知橢圓C:的離心率為,短軸的一個端點到右焦點的距離為2.(1)橢圓C的方程;(2)設直線l:交橢圓C于A,B兩點,且,求m的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由利用因式分解可得,即可判斷出數列是以為首項,為公差的等差數列,從而得到數列,數列的通項公式,進而求出【詳解】等價于,而,所以,即可知數列是以為首項,為公差的等差數列,即有,所以,故故選:D2、B【解析】根據題意求出,結合余弦定理分情況討論即可.【詳解】解:因為,所以.由題意得,利用余弦定理得:.當,即時,,即,解得:.此時三角形為等邊三角形;當,即時,,不成立.所以三角形的形狀是等邊三角形.故選:B.【點睛】本題主要考查利用余弦定理判斷三角形的形狀,屬于基礎題.3、B【解析】設點P在準線上的射影為D,則根據拋物線的定義可知|PF|=|PD|,進而把問題轉化為求|PM|+|PD|的最小值,即可求解【詳解】解:由題意,設點P在準線上的射影為D,則根據拋物線的定義可知|PF|=|PD|,所以要求|PM|+|PF|的最小值,即求|PM|+|PD|的最小值,當D,P,M三點共線時,|PM|+|PD|取得最小值為故選:B4、B【解析】“存在,使得”為真命題,可得,利用二次函數的單調性即可得出.再利用充要條件的判定方法即可得出.【詳解】解:因為“存在,使得”為真命題,所以,因此上述命題得個充分不必要條件是.故選:B.【點睛】本題考查了二次函數的單調性、充要條件的判定方法,考查了推理能力與計算能力,屬于中檔題.5、C【解析】根據空間坐標系中點的對稱關系求解【詳解】點關于平面的對稱點的坐標為,故選:C6、D【解析】由題設易知四邊形為矩形,可得,結合已知條件有即可求橢圓C的離心率的取值范圍.【詳解】由橢圓的對稱性知:,而,又,即四邊形為矩形,所以,則且M在第一象限,整理得,所以,又即,綜上,,整理得,所以.故選:D.【點睛】關鍵點點睛:由橢圓的對稱性及矩形性質可得,由已知條件得到,進而得到橢圓參數的齊次式求離心率范圍.7、C【解析】根據等比數列的性質求得,再根據,即可求得結果.【詳解】等比數列滿足,設等比數列的公比為q,所以,解得,故,故選:C8、D【解析】利用對立事件的概率求法求飛行目標被雷達發現的概率.【詳解】由題設,飛行目標不被甲、乙發現的概率分別為、,所以飛行目標被雷達發現的概率為.故選:D9、C【解析】構造函數利用導數說明函數的單調性,即可判斷大小,從而得解;【詳解】解:令,,則,所以在上單調遞增,所以,即,即,,故①正確;令,,則,所以當時,,當時,,所以在上單調遞減,在上單調遞增,所以,即恒成立,所以,故②正確;令,,當時,當時,所以在上單調遞減,在上單調遞增,所以,即,所以,當且僅當時取等號,故③錯誤;故選:C10、C【解析】根據等方差數列的定義,結合等差數列的通項公式,運用裂項相消法進行求解即可.【詳解】因為是方公差為4的等方差數列,所以,,∴,∴,∴,故選:C11、D【解析】根據題意可得數列2,3,5,8,12,17,23,,滿足:,,從而利用累加法即可求出,進一步即可得到的值【詳解】2,3,5,8,12,17,23,后項減前項可得1,2,3,4,5,6,所以,所以.所以.故選:D12、B【解析】求出邊上的高所在的直線的斜率,再利用點斜式方程可得答案.【詳解】因為,所以邊上的高所在的直線的斜率為,所以邊上的高所在的直線方程為,即.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】利用等比中項及條件可得,進而可得,再利用基本不等式即得.【詳解】∵,,都為正實數,,,成等比數列,∴,又,∴,即,∴,∴,當且僅當,即取等號.故答案為:.14、【解析】根據二元二次方程表示圓的條件求解【詳解】由題意,故答案為:15、【解析】解方程組可求得定點坐標.【詳解】直線方程可化為,由,可得.故直線恒過定點.故答案為:.16、【解析】根據根與系數的關系以及一元二次不等式的解法即可解出【詳解】由題意可知,,解得,所以即為,解得或,所以不等式的解集是故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析.(Ⅱ).(Ⅲ).【解析】第一問根據面面垂直的性質和線面垂直的性質得出線線垂直的結論,注意在書寫的時候條件不要丟就行;第二問建立空間直角坐標系,利用法向量所成角的余弦值來求得二面角的余弦值;第三問利用向量共線的關系,得出向量的坐標,根據線面平行得出向量垂直,利用其數量積等于零,求得結果.(Ⅰ)證明:因為平面⊥平面,且平面平面,因為⊥,且平面所以⊥平面因為平面,所以⊥.(Ⅱ)解:在△中,因為,,,所以,所以⊥.所以,建立空間直角坐標系,如圖所示所以,,,,,,.易知平面的一個法向量為.設平面的一個法向量為,則,即,令,則.設二面角的平面角為,可知為銳角,則,即二面角的余弦值為(Ⅲ)解:因為點在棱,所以,因為,所以,.又因為平面,為平面的一個法向量,所以,即,所以所以,所以.18、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由橢圓的定義求出的值,由求出,代入,得到橢圓的方程;(Ⅱ)由點斜式求出直線的方程,設,聯立直線與橢圓方程,求出的值,再算出的面積試題解析(Ⅰ)由橢圓的定義得:又,故,∴橢圓的方程為:.(Ⅱ)過的直線方程為,,聯立,設,則,∴的面積.點睛:本題主要考查了求橢圓的方程,直線與橢圓相交時弦長的計算等,屬于中檔題.在(Ⅱ)中,注意的面積的計算公式19、(1)(2)【解析】(1)利用與的關系求解即可;(2)首先利用裂項求和得到,從而得到,再解不等式即可.【小問1詳解】令,則,當時,,當時,也符合上式,即數列的通項公式為.【小問2詳解】由(1)得,則,所以故可化為:,故,故不等式的解集為.20、(1);(2)或.【解析】(1)AB兩點的中點為圓心,AB兩點距離的一半為半徑;(2)分斜率存在和不存在,根據垂徑定理即可求解.【小問1詳解】已知點,,線段是圓M的直徑,則圓心坐標為,∴半徑,∴圓的方程為;【小問2詳解】由(1)可知圓的圓心,半徑為.設為中點,則,,則.當的斜率不存在時,的方程為,此時,符合題意;當的斜率存在時,設的方程為,即kx-y+2=0,則,解得,故直線的方程為,即.綜上,直線的方程為或.21、(1)(2)0【解析】(1)利用等差數列通項公式基本量的計算可求得,進而利用等比數列的基本量的計算即可求得數列的通項公式;(2)由(1)可知,則,觀察分析即可解【小問1詳解】設等差數列的公差為d,所以由,,得所以,從而,,所以,,q=3,所以【小問2詳解】由(1)可知,所以,當n

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論