




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
吉林省長春市榆樹市2025屆高二數學第一學期期末質量跟蹤監視試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某校初一有500名學生,為了培養學生良好的閱讀習慣,學校要求他們從四大名著中選一本閱讀,其中有200人選《三國演義》,125人選《水滸傳》,125人選《西游記》,50人選《紅樓夢》,若采用分層抽樣的方法隨機抽取40名學生分享他們的讀后感,則選《西游記》的學生抽取的人數為()A.5 B.10C.12 D.152.數列1,6,15,28,45,...中的每一項都可用如圖所示的六邊形表示出來,故稱它們為六邊形數,那么第10個六邊形數為()A.153 B.190C.231 D.2763.平行直線:與:之間的距離等于()A. B.C. D.4.如圖,直四棱柱的底面是菱形,,,M是的中點,則異面直線與所成角的余弦值為()A. B.C. D.5.已知等比數列的前3項和為3,,則()A. B.4C. D.16.設函數的定義域為,滿足,且當時,.若對任意,都有,則的取值范圍是()A. B.C. D.7.某產品的銷售收入(萬元)是產量x(千臺)的函數,且函數解析式為,生產成本(萬元)是產量x(千臺)的函數,且函數解析式為,要使利潤最大,則該產品應生產()A.6千臺 B.7千臺C.8千臺 D.9千臺8.紫砂壺是中國特有的手工制造陶土工藝品,其制作始于明朝正德年間.紫砂壺的壺型眾多,經典的有西施壺、掇球壺、石瓢壺、潘壺等.其中,石瓢壺的壺體可以近似看成一個圓臺(即圓錐用平行于底面的平面截去一個錐體得到的).下圖給出了一個石瓢壺的相關數據(單位:cm),那么該壺的容量約為()A.100 B.C.300 D.4009.已知向量,,且與互相平行,則的值為()A.-2 B.C. D.10.《周髀算經》是中國最古老的天文學和數學著作,書中提到:冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節氣的日影子長依次成等差數列.若冬至、大寒、雨水的日影子長的和是尺,芒種的日影子長為尺,則冬至的日影子長為()A.尺 B.尺C.尺 D.尺11.已知向量,,且,則實數等于()A.1 B.2C. D.12.已知四棱柱ABCD-A1B1C1D1的底面是邊長為2的正方形,側棱與底面垂直,若點C到平面AB1D1的距離為,則直線與平面所成角的余弦值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,四棱錐的底面是正方形,底面,為的中點,若,則點到平面的距離為___________.14.2021年7月24日,在東京奧運會女子10米氣步槍決賽中,中國選手楊倩以251.8環的總成績奪得金牌,為中國代表團摘得本屆奧運會首金.已知楊倩其中5次射擊命中的環數如下:10.8,10.6,10.6,10.7,9.8,則這組數據的方差為______15.過拋物線:的焦點的直線交于,兩點,若,則線段中點的橫坐標為______16.一道數學難題,在半小時內,甲能解決的概率是,乙能解決的概率是,兩人試圖獨立地在半小時內解決它,則問題得到解決的概率是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,且)的圖象經過點和
.(1)求實數,的值;(2)若,求數列前項和
.18.(12分)如圖,在三棱錐中,底面,.點,,分別為棱,,的中點,是線段的中點,,(1)求證:平面;(2)求二面角的正弦值;(3)已知點在棱上,且直線與直線所成角的余弦值為,求線段的長19.(12分)已知等比數列滿足,.(1)求數列的前8項和;(2)求數列的前項積.20.(12分)在四棱錐中,底面是直角梯形,,,,分別是棱,的中點(1)證明:平面;(2)若,且四棱錐的體積是6,求三棱錐的體積21.(12分)設函數(Ⅰ)求的單調區間;(Ⅱ)若,為整數,且當時,恒成立,求的最大值.(其中為的導函數.)22.(10分)已知曲線C的方程為(1)判斷曲線C是什么曲線,并求其標準方程;(2)過點的直線l交曲線C于M,N兩點,若點P為線段MN的中點,求直線l的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據分層抽樣的方法,列出方程,即可求解.【詳解】根據分層抽樣的方法,可得選《西游記》的學生抽取的人數為故選:B.2、B【解析】細心觀察,尋求相鄰項及項與序號之間的關系,同時聯系相關知識,如等差數列、等比數列等,結合圖形可知,,,,,,,據此即可求解.【詳解】由題意知,數列的各項為1,6,15,28,45,...所以,,,,,,所以.故選:B【點睛】本題考查合情推理中的歸納推理;考查邏輯推理能力;觀察分析、尋求規律是求解本題的關鍵;屬于中檔題、探索型試題.3、B【解析】先由兩條直線平行解出,再按照平行線之間距離公式求解.【詳解】,則:,即,距離為.故選:B.4、D【解析】用向量分別表示,利用向量的夾角公式即可求解.【詳解】由題意可得,故選:D【點睛】本題主要考查用向量的夾角公式求異面直線所成的角,屬于基礎題.5、D【解析】設等比數列公比為,由已知結合等比數列的通項公式可求得,,代入即可求得結果.【詳解】設等比數列的公比為,由,得即,又,即又,,解得又等比數列的前3項和為3,故,即,解得故選:D6、D【解析】由題意得當時,,根據題意作出函數的部分圖象,再結合圖象即可求出答案【詳解】解:當時,,又,∴當時,,∴在上單調遞增,在上單調遞減,且;又,則函數圖象每往右平移兩個單位,縱坐標變為原來的倍,作出其大致圖象得,當時,由得,或,由圖可知,若對任意,都有,則,故選:D【點睛】本題主要考查函數的圖象變換,考查數形結合思想,屬于中檔題7、A【解析】構造利潤函數,求導,判斷單調性,求得最大值處對應的自變量即可.【詳解】設利潤為y萬元,則,∴.令,解得(舍去)或,經檢驗知既是函數的極大值點又是函數的最大值點,∴應生產6千臺該產品.故選:A【點睛】利用導數求函數在某區間上最值的規律:(1)若函數在區間上單調遞增或遞減,與一個為最大值,一個為最小值(2)若函數在閉區間上有極值,要先求出上的極值,與,比較,最大的是最大值,最小的是最小值,可列表完成(3)函數在區間上有唯一一個極值點,這個極值點就是最大(或小)值點,此結論在導數的實際應用中經常用到8、B【解析】根據圓臺的體積等于兩個圓錐的體積之差,即可求出【詳解】設大圓錐的高為,所以,解得故故選:B【點睛】本題主要考查圓臺體積的求法以及數學在生活中的應用,屬于基礎題9、A【解析】應用空間向量坐標的線性運算求、的坐標,根據空間向量平行有,即可求的值.【詳解】由題設,,,∵與互相平行,∴且,則,可得.故選:A10、D【解析】根據題意轉化為等差數列,求首項.【詳解】設冬至的日影長為,雨水的日影長為,根據等差數列的性質可知,芒種的日影長為,,解得:,,所以冬至的日影長為尺.故選:D11、C【解析】利用空間向量垂直的坐標表示計算即可得解【詳解】因向量,,且,則,解得,所以實數等于.故選:C12、A【解析】先由等面積法求得的長,再以為坐標原點,建立如圖所示的空間直角坐標系,運用線面角的向量求解方法可得答案【詳解】如圖,連接交于點,過點作于,則平面,則,設,則,則根據三角形面積得,代入解得以為坐標原點,建立如圖所示的空間直角坐標系則,,設平面的法向量為,,,則,即,令,得,所以直線與平面所成的角的余弦值為,故選:二、填空題:本題共4小題,每小題5分,共20分。13、【解析】以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可求得點到平面的距離.【詳解】因為底面,,以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,則、、、,設平面的法向量為,,,則,取,可得,,所以,點到平面的距離為.故答案為:.14、128【解析】先求均值,再由方差公式計算【詳解】由已知,所以,故答案為:15、【解析】根據題意,作出拋物線的簡圖,求出拋物線的焦點坐標以及準線方程,分析可得為直角梯形中位線,由拋物線的定義分析可得答案【詳解】如圖,拋物線的焦點為,準線為,分別過,作準線的垂線,垂足為,,則有過的中點作準線的垂線,垂足為,則為直角梯形中位線,則,即,解得.所以的橫坐標為故答案為:16、【解析】分甲解決乙不能解決,甲不能解決乙能解決,甲能解決乙也能解決三類,利用獨立事件的概率求解.【詳解】因為甲能解決的概率是,乙能解決的概率是,所以問題得到解決的概率是,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】(1)將A、B點坐標代入,計算求解,即可得答案.(2)由(1)可得解析式,即可得,利用分組求和法,結合等比數列的求和公式,即可得答案.【小問1詳解】由已知,可得,所以,解得,
.【小問2詳解】由(1)得,又,所以,故
.18、(1)證明見解析;(2);(3)或【解析】本小題主要考查直線與平面平行、二面角、異面直線所成的角等基礎知識.考查用空間向量解決立體幾何問題的方法.考查空間想象能力、運算求解能力和推理論證能力.首先要建立空間直角坐標系,寫出相關點的坐標,證明線面平行只需求出平面的法向量,計算直線對應的向量與法向量的數量積為0,求二面角只需求出兩個半平面對應的法向量,借助法向量的夾角求二面角,利用向量的夾角公式,求出異面直線所成角的余弦值,利用已知條件,求出的值.試題解析:如圖,以A為原點,分別以,,方向為x軸、y軸、z軸正方向建立空間直角坐標系.依題意可得A(0,0,0),B(2,0,0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2),M(0,0,1),N(1,2,0).(1)證明:=(0,2,0),=(2,0,).設,為平面BDE的法向量,則,即.不妨設,可得.又=(1,2,),可得.因為平面BDE,所以MN//平面BDE.(2)解:易知為平面CEM的一個法向量.設為平面EMN的法向量,則,因為,,所以.不妨設,可得.因此有,于是.所以,二面角C—EM—N的正弦值為.(3)解:依題意,設AH=h(),則H(0,0,h),進而可得,.由已知,得,整理得,解得,或.所以,線段AH的長為或.【考點】直線與平面平行、二面角、異面直線所成角【名師點睛】空間向量是解決空間幾何問題的銳利武器,不論是求空間角、空間距離還是證明線面關系利用空間向量都很方便,利用向量夾角公式求異面直線所成的角又快又準,特別是借助平面的法向量求線面角,二面角或點到平面的距離都很容易.19、(1)(2)【解析】(1)設等比數列的公比為,由,求出公比,然后由等比數列前項和公式可得答案.(2)先得出通項公式,然后可得,由指數的運算性質,結合由等差數列前項和公式可得答案.小問1詳解】設等比數列的公比為,,解得所以所以【小問2詳解】20、(1)證明見解析.(2)2.【解析】(1)取的中點,連接,.運用面面平行的判定和性質可得證;(2)過點作,垂足為,連接,,設點到平面的距離為,根據棱錐的體積求得,再利用三棱錐的體積與三棱錐的體積相等,三棱錐的體積與三棱錐的體積相等,可求得答案.【小問1詳解】證明:如圖,取的中點,連接,因為,分別是棱,的中點,所以,又平面,平面,所以平面因為,且,分別是棱,的中點,所以,又平面,平面,所以平面因為平面,且,所以平面平面因為平面,所以平面【小問2詳解】解:過點作,垂足為,連接,,則四邊形是正方形,從而因為,所以,則,從而直角梯形的面積設點到平面的距離為,則四棱錐的體積,解得因為三棱錐的體積與三棱錐的體積相等,所以三棱錐的體積因為平面,所以三棱錐的體積與三棱錐的體積相等,所以三棱錐的體積為221、(Ⅰ)答案見解析;(Ⅱ).【解析】(Ⅰ)的定義域為,,分和兩種情況解不等式和即可得單調遞增區間和單調遞減區間;(Ⅱ)由題意可得對于恒成立,分離可得,令,只需,利用導數求最小值即可求解.【詳解】(Ⅰ)函數的定義域為,當時,對于恒成立,此時函數在上單調遞增;當時,由可得;由可得;此時在上單調遞減,在上單調遞增;綜上所述:當時,函數的單調遞增區間為,當時,單調遞減區間為,單調遞增區間為,(Ⅱ)若,由可得,因為,所以,所以所以對于恒成立,令,則,,令,則對于恒成立,所以在單調遞增,因為,,所以在上存在唯一零點,即,可得:,當時,,則,當時,,則,所以在上單調遞減,在上單調遞增,所以,因為,所以的最大值為.【點睛】方法點睛:利用導數研究函數單調性的方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年土木工程師考試備考策略試題及答案
- 化學反應控制的參數與策略試題及答案
- 2025年創業扶持政策在創新創業中的重要性試題及答案
- 創業扶持政策對女性創業者支持試題及答案
- 交叉學習2025年注冊土木工程師考試知識延伸試題及答案
- 2025年大學物理考試學習優化試題及答案
- 中銀集團面試題及答案
- 2025年土木工程師考試數學題解析試題及答案
- 中國針孔廣角攝像頭行業發展趨勢與投資戰略研究報告2025-2028版
- 商務英語行業動態試題及答案2025年
- 機械制造及非標零部件加工項目突發環境事件應急預案
- 2025年裝維智企工程師(三級)復習模擬100題及答案
- 國家管網集團西南管道昆明輸油氣分公司突發環境事件綜合應急預案
- 2025年紹興市九年級中考語文一模試卷附答案解析
- 9.1科學立法 課件高中政治統編版必修三政治與法治
- 施工現場臨時用電安全
- 停送電培訓課件
- 醫院培訓課件:《核心制度-護理值班和交接班制度》
- 解題秘籍05 圓的綜合問題(9種題型匯-總+專題訓練)(解析版)-2025年中考數學重難點突破
- 無線網絡施工方案
- 電商平臺居間合同
評論
0/150
提交評論