2025屆甘肅省臨洮縣二中數學高二上期末教學質量檢測模擬試題含解析_第1頁
2025屆甘肅省臨洮縣二中數學高二上期末教學質量檢測模擬試題含解析_第2頁
2025屆甘肅省臨洮縣二中數學高二上期末教學質量檢測模擬試題含解析_第3頁
2025屆甘肅省臨洮縣二中數學高二上期末教學質量檢測模擬試題含解析_第4頁
2025屆甘肅省臨洮縣二中數學高二上期末教學質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆甘肅省臨洮縣二中數學高二上期末教學質量檢測模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,則下列結論一定成立的是()A. B.C. D.2.已知雙曲線C:(,)的一條漸近線被圓所截得的弦長為2,的C的離心率為()A. B.C.2 D.3.已知定義在R上的函數滿足,且有,則的解集為()A. B.C. D.4.某校去年有1100名同學參加高考,從中隨機抽取50名同學總成績進行分析,在這個調查中,下列敘述錯誤的是A.總體是:1100名同學的總成績 B.個體是:每一名同學C.樣本是:50名同學的總成績 D.樣本容量是:505.執行如圖所示的程序框圖,若輸出的的值為,則輸入的的值可能為()A.96 B.97C.98 D.996.函數的大致圖象為A. B.C. D.7.設變量,滿足約束條件,則目標函數的最大值為()A. B.0C.6 D.88.已知雙曲線左右焦點為,過的直線與雙曲線的右支交于,兩點,且,若線段的中垂線過點,則雙曲線的離心率為()A.3 B.2C. D.9.已知數列滿足,,,前項和()A. B.C. D.10.已知正實數x,y滿足4x+3y=4,則的最小值為()A. B.C. D.11.已知“”的必要不充分條件是“或”,則實數的最小值為()A. B.C. D.12.已知雙曲線的左右焦點分別為、,過作的一條漸近線的垂線,垂足為,若的面積為,則的漸近線方程為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,若向量與向量平行,則實數______14.拋物線C:的焦點F,其準線過(-3,3),過焦點F傾斜角為的直線交拋物線于A,B兩點,則p=___________;弦AB的長為___________.15.在空間直角坐標系中,已知向量,則的值為__________.16.等軸(實軸長與虛軸長相等)雙曲線的離心率_______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為深入學習貫徹總書記在黨史學習教育動員大會上的重要講話精神和中共中央有關決策部署,推動教育系統圍繞建黨百年重大主題,深化中學在校師生理想信念教育,引導師生學史明理、學史增信、學史崇德、學史力行,以昂揚的狀態迎接中國共產黨建黨周年,哈工大附中高二年級組織本年級同學開展了一場黨史知識競賽.為了解本次知識競賽的整體情況,隨機抽取了名學生的成績作為樣本進行統計,得到如圖所示的頻率分布直方圖(1)求直方圖中a的值,并求該次知識競賽成績的第50百分位數(精確到0.1);(2)已知該樣本分數在的學生中,男生占,女生占現從該樣本分數在的學生中隨機抽出人,求至少有人是女生的概率.18.(12分)雙曲線,離心率,虛軸長為2(1)求雙曲線的標準方程;(2)經過點的直線與雙曲線相交于兩點,且為的中點,求直線的方程19.(12分)已知函數.(Ⅰ)求的單調遞減區間;(Ⅱ)若當時,恒成立,求實數a的取值范圍.20.(12分)已知橢圓的離心率為,且經過點.(1)求橢圓的方程;(2)經過點的直線與橢圓交于不同的兩點,,為坐標原點,若的面積為,求直線的方程.21.(12分)已知等差數列滿足:,.(1)求數列的通項公式;(2)若數列滿足:,,求數列的通項公式.22.(10分)已知等比數列{an}中,a1=1,且2a2是a3和4a1的等差中項.數列{bn}滿足b1=1,b7=13,且bn+2+bn=2bn+1.(1)求數列{an}的通項公式;(2)求數列{an+bn}前n項和Tn.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據不等式的同向可加性求解即可.【詳解】因為,所以,又,所以.故選:B.2、C【解析】由雙曲線的方程可得漸近線的直線方程,根據直線和圓相交弦長可得圓心到直線的距離,進而可得,結合,可得離心率.【詳解】雙曲線的一條漸近線方程為,即,被圓所截得的弦長為2,所以圓心到直線的距離為,,解得,故選:C【點睛】本題考查了雙曲線的漸近線和離心率、直線和圓的相交弦、點到直線距離等基本知識,考查了運算求解能力和邏輯推理能力,轉化的數學思想,屬于一般題目.3、A【解析】構造,應用導數及已知條件判斷的單調性,而題設不等式等價于即可得解.【詳解】設,則,∴R上單調遞增.又,則.∵等價于,即,∴,即所求不等式的解集為.故選:A.4、B【解析】采用逐一驗證法,根據總體,個體,樣本的概念,可得結果.【詳解】據題意:總體是1100名同學的總成績,故A正確個體是每名同學的總成績,故B錯樣本是50名同學的總成績,故C正確樣本容量是:50,故D正確故選:B【點睛】本題考查總體,個體,樣本的概念,屬基礎題.5、D【解析】根據程序框圖得出的變換規律后求解【詳解】當時,,當時,,當時,,當時,,可得輸出的T關于t的變換周期為4,而,故時,輸出的值為,故選:D6、D【解析】根據函數奇偶性排除A、C.當時排除B【詳解】解:由可得所以函數為偶函數,排除A、C.因為時,,排除B.故選:D.7、C【解析】畫出可行域,利用幾何意義求出目標函數最大值.【詳解】畫出圖形,如圖所示:陰影部分即為可行域,當目標函數經過點時,目標函數取得最大值.故選:C8、C【解析】由雙曲線的定義得出中各線段長(用表示),然后通過余弦定理得出的關系式,變形后可得離心率【詳解】由題意又則有:可得:,,中,中.可得:解得:則有:故選:C9、C【解析】根據,利用對數運算得到,再利用等比數列的前n項和公式求解.【詳解】解:因為,所以,則,所以數列是以為首項,為公比的等比數列,所以,故選:C10、A【解析】將4x+3y=4變形為含2x+1和3y+2的等式,即2(2x+1)+(3y+2)=8,再由換元法、基本不等式換“1”的代換求解即可【詳解】由正實數x,y滿足4x+3y=4,可得2(2x+1)+(3y+2)=8,令a=2x+1,b=3y+2,可得2a+b=8,∴,即,當且僅當時取等號,∴的最小值為.故選:A11、A【解析】首先解不等式得到或,根據題意得到,再解不等式組即可.【詳解】,解得或,因為“”的必要不充分條件是“或”,所以.實數的最小值為.故選:A12、D【解析】求得,根據的面積列方程,由此求得,進而求得雙曲線的漸近線方程.【詳解】依題意,雙曲線的一條漸近線為,則,所以,所以,所以.所以雙曲線漸近線方程為.故選:D【點睛】本小題主要考查雙曲線漸近線的有關計算,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】先求出的坐標,進而根據空間向量平行的坐標運算求得答案.【詳解】由題意,,因為,所以存在實數使得.故答案為:2.14、①.6;②.48.【解析】先通過準線求出p,寫出拋物線方程和直線方程,聯立得出,進而求出弦AB的長.【詳解】由知準線方程為,又準線過(-3,3),可得,;焦點坐標為,故直線方程為,和拋物線方程聯立,,得,故,又.故答案為:6;48.15、【解析】由題知,進而根據向量數量積運算的坐標表示求解即可.【詳解】解:因為向量,所以,所以故答案為:16、【解析】由題意可知,,由,化簡可求離心率.【詳解】由題意可知,,兩邊同時平方,得,即,,所以離心率,故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用頻率和為1求出a;利用百分位數的定義求出知識競賽成績的第50百分位數;(2)先利用分層抽樣求出男、女生的人數,利用古典概型求概率.【小問1詳解】,由,解得設該次知識競賽成績的第50百分位數為x,則,解得:.即該次知識競賽成績的第50百分位數為【小問2詳解】由頻率分布直方圖可知:分數在)的人數有人,所以這人中,女生有人,記為、,男生有人,記為、、、從這人中隨機選取人,基本事件為:、、、、、、、、、、、、、、,共種不同取法;則至少有人是女生的基本事件為、、、、、、、、,共種不同取法,則所求的概率為18、(1)(2)【解析】(1)根據題意求出即可得出;(2)利用點差法求出直線斜率即可得出方程.【小問1詳解】∵,,∴,,∵,∴,∴,∴雙曲線的標準方程為;【小問2詳解】設以定點為中點的弦的端點坐標為,可得,,由在雙曲線上,可得:,兩式相減可得以定點為中點的弦所在的直線斜率為:則以定點為中點的弦所在的直線方程為,即為,聯立方程得:,,符合,∴直線的方程為:.19、(Ⅰ)單調遞減區間為;(Ⅱ).【解析】(Ⅰ)求函數的導函數,求的區間即為所求減區間;(Ⅱ)化簡不等式,變形為,即求,令,求的導函數判斷的單調性求出最小值,可求出的范圍.【詳解】(Ⅰ)由題可知.令,得,從而,∴的單調遞減區間為.(Ⅱ)由可得,即當時,恒成立.設,則.令,則當時,.∴當時,單調遞增,,則當時,,單調遞減;當時,,單調遞增.∴,∴.【點睛】思路點睛:在函數中,恒成立問題,可選擇參變分離的方法,分離出參數轉化為或,轉化為求函數的最值求出的范圍.20、(1);(2)或.【解析】(1)由離心率公式、將點代入橢圓方程得出橢圓的方程;(2)聯立橢圓和直線的方程,由判別式得出的范圍,再由韋達定理結合三角形面積公式得出,求出的值得出直線的方程.【詳解】解:(1)因為橢圓的離心率為,所以.①又因為橢圓經過點,所以有.②聯立①②可得,,,所以橢圓的方程為.(2)由題意可知,直線的斜率存在,設直線的方程為.由消去整理得,.因為直線與橢圓交于不同兩點,所以,即,所以設,,則,.由題意得,面積,即.因為的面積為,所以,即.化簡得,,即,解得或,均滿足,所以或.所以直線的方程為或.【點睛】關鍵點睛:在第二問中,關鍵是由韋達定理建立的關系,結合三角形面積公式求出斜率,得出直線的方程.21、(1);(2).【解析】(1)由題設條件,結合等差數列通項公式求基本量d,進而寫出通項公式.(2)由(1)得,應用累加法、錯位相減法及等比數列前n項和公式求的通項公式.【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論