




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
ITUPublicationsInternationalTelecommunicationUnion
TelecommunicationStandardizationSector
AIReady–AnalysisTowardsaStandardizedReadiness
Framework
Version1.0
September2024
ITU
AIReady–AnalysisTowardsaStandardizedReadinessFramework
Version1.0
September2024
ITU
Disclaimers
Thedesignationsemployedandthepresentationofthematerialinthispublicationdonotimply
theexpressionofanyopinionwhatsoeveronthepartoftheInternationalTelecommunicationUnion(ITU)oroftheITUsecretariatconcerningthelegalstatusofanycountry,territory,city,orareaorofitsauthorities,orconcerningthedelimitationofitsfrontiersorboundaries.
Thementionofspecificcompaniesorofcertainmanufacturers’productsdoesnotimplythattheyareendorsedorrecommendedbyITUinpreferencetoothersofasimilarnaturethatarenotmentioned.Errorsandomissionsexcepted;thenamesofproprietaryproductsaredistinguishedbyinitialcapitalletters.
AllreasonableprecautionshavebeentakenbyITUtoverifytheinformationcontainedinthispublication.However,thepublishedmaterialisbeingdistributedwithoutwarrantyofanykind,eitherexpressedorimplied.Theresponsibilityfortheinterpretationanduseofthemateriallieswiththereader.
Theopinions,findingsandconclusionsexpressedinthispublicationdonotnecessarilyreflecttheviewsofITUoritsmembership.
ISBN
978-92-61-39131-7(Electronicversion)978-92-61-39141-6(EPUBversion)
978-92-61-39151-5(Mobiversion)
Pleaseconsidertheenvironmentbeforeprintingthisreport.
?ITU2024
Somerightsreserved.ThisworkislicensedtothepublicthroughaCreativeCommonsAttribution-Non-Commercial-ShareAlike3.0IGOlicense(CCBY-NC-SA3.0IGO).
Underthetermsofthislicence,youmaycopy,redistributeandadapttheworkfornon-commercialpurposes,providedtheworkisappropriatelycited.Inanyuseofthiswork,thereshouldbenosuggestionthatITUendorseanyspecificorganization,productsorservices.TheunauthorizeduseoftheITUnamesorlogosisnotpermitted.Ifyouadaptthework,thenyoumustlicenseyourworkunderthesameorequivalentCreativeCommonslicence.Ifyoucreateatranslationofthiswork,youshouldaddthefollowingdisclaimeralongwiththesuggestedcitation:“ThistranslationwasnotcreatedbytheInternationalTelecommunicationUnion(ITU).ITUisnotresponsibleforthecontentoraccuracyofthistranslation.TheoriginalEnglisheditionshallbethebindingandauthenticedition”.Formoreinformation,pleasevisit
/
licenses/by-nc-sa/3.0/igo/
Tableofcontents
Acronyms
v
1ExecutiveSummary
1
2Introduction
4
3CaseStudies
7
3.1CaseStudy-1:IoT-basedEnvironmentMonitoringBasedon
StandardIndices
7
3.2CaseStudy-2:AI-basedFrontendwithMultimodalBackendData
Aggregation
8
3.3CaseStudy-3:CollaborativeMulti-agentSystems
9
3.4CaseStudy-4:EmpoweringLocalCommunities
12
3.5CaseStudy-5:RegionalCustomizations
14
4UseCaseAnalysis
16
4.1UseCaseSummaries
16
4.2TrafficSafety
17
4.3SmartAgriculture
18
4.4HealthCare
21
4.5PublicServices
22
4.6DisasterPrevention
24
4.7Climate,CleanEnergy
25
4.8FutureNetworksandTelecommunications
26
4.9Accessibility
26
5DataAnalyticsStrategy
29
6Futureworkandconclusion
33
7Reference
34
AppendixA:DetailedanalysisoftheusecasesandAIimpactsontheusecases
41
AppendixB:SpecificimpactsofthesecharacteristicsonStandardsFrameworks
forAIreadinessrequirefurtherstudy
51
iii
Listoffiguresandtables
Figures
Figure1:ITUAIforGoodInfinityFrameworkforAIReadiness
2
Figure2:InstancesofReadinessFactorsinCaseStudy-1
8
Figure3:InstancesofReadinessFactorsinCaseStudy-2
9
Figure4:InstancesofReadinessFactorsinCaseStudy-3
11
Figure5:InstancesofReadinessFactorsinCaseStudy-4
13
Figure6:InstancesofReadinessFactorsinCaseStudy-5
15
Tables
Table1:CharacteristicsoftheAIReadinessfactors
29
Table2:GeneralusecaseanalysisandAIimpacts
41
Table3:Analysisofusecasescenarios
51
iv
Acronyms
ADAS
AdvancedDrivingAssistanceSystem
AEB
AutonomousEmergencyBraking
AI
ArtificialIntelligence
AIML
ArtificialIntelligenceandMachineLearning
API
ApplicationProgrammerInterfaces
ASEAN
AssociationofSoutheastAsianNations
ASR
AutomaticSpeechRecognition
CBAM
ConvolutionalBlockAttentionMechanism
CCTV
ClosedCircuitTelevision
CfE
CallforEngagement
DC
DroughtCode
DMC
DuffMoistureCode
DSRC
DedicatedShort-RangeCommunication
DUI
DrivingunderIntoxication
FDRS
FireDangerRatingSystem
FWI
FireWeatherIndex
GPS
GlobalPositioningSystem
GPU
GraphicsProcessingUnit
GWL
GroundwaterLevel
IASRI
IndianAgriculturalStatisticsResearchInstitute
IISS
IndianInstituteofSoilScience
IMD
IndianMeteorologicalDepartment
IoT
InternetofThings
KPI
KeyPerformanceIndicator
LSTM
LongShortTermModel
MARS
MultivariateAdaptiveRegressionSpline
METMalaysia
MalaysianMeteorologicalDepartment
MQTT
MessageQueuingTelemetryTransport
v
(continued)
NBSS&LUP
NationalBureauofSoilSurveyandLandUsePlanning
NLP
NaturalLanguageProcessing
NPK
Nitrogen,Phosphorus,Potassium
RAG
RetrievalAugmentedGeneration
RF
RandomForest
RL
ReinforceLearning
RMFR
RajaMusaForestReserve
RSU
RoadsideUnits
SAE
SocietyofAutomotiveEngineer
SDG
SustainableDevelopmentGoal
SDK
SoftwareDevelopmentKit
SDO
StandardsDevelopingOrganization
SRC
SourceofData
TCP/IP
TransmissionControlProtocol/InternetProtocol
TTS
Text-to-Speech
UAV
UnmannedAerialVehicle
vi
AIReady–AnalysisTowardsaStandardizedReadinessFramework
1ExecutiveSummary
ThisreportprovidesananalysisoftheArtificialIntelligence(AI)ReadinessstudyaimedatdevelopingaframeworkforassessingAIReadinesswhichindicatestheabilitytoreapthebenefitsofAIintegration.Bystudyingtheactorsandcharacteristicsindifferentdomains,abottom-upapproachisfollowedwhichallowsustofindcommonpatterns,metrics,andevaluationmechanismsfortheintegrationofAIinthesedomains.
TheanalysisofcharacteristicsofusecasesledustothemainAIreadinessfactors:
1)Availabilityofopendata
Theavailabilityofdataiscrucialintraining,modeling,andapplicationsofAIirrespectiveofthedomain.Dataavailabilityforanalysismaybeprivateorpublic.Metadataforprivatedatamaybepublished(e.g.datatypesandstructures).However,publicdata,openforanalysisbyanyone,requirescleaningandanonymizationtoremoveconfidentialorpersonalinformation.
2)AccesstoResearch
Balancingthetwomainaspectsofresearch,namelyadvancementsindomain-specificresearchandadvancementsinAIresearchrequirescollaborationbetweendomainexpertsandAIresearchers.Providingaplatformforcollaborationwithexpertsfromdifferentrealmsofknowledge,facilitatingcooperation,andexchangeofinformationamongthemiskeytocreatingasustainableecosystemforAI-basedinnovation.
3)DeploymentcapabilityalongwithInfrastructure
Twomajorcategoriesofinfrastructurearestudied–physicalinfrastructureandcommunicationinfrastructure.Consideringthecontextoftransportationsafety,examplesofphysicalinfrastructurearespeedbarriersandotherregulatorymechanismsforspeedcontrol(seeclause4.2.4).Otherexamplesaregreenhouses,moisturizers(seeclause4.3.6),andsensorsthatprovideanappropriateenvironmentandmonitorplantsinagriculturalusecases.PhysicalinfrastructureelementsplayanimportantroleintheintegrationandapplicationofAIindatacollection,aggregation-attheedgeorcore,training–federatedorcentralized,andintheapplicationofArtificialIntelligenceandMachineLearning(AI/ML)inferenceusingactuators.
Inaddition,thereisbackendinfrastructure,suchascomputeavailability,storageavailability,fiber/wirelessavailabilityforthelastmile,andhigh-speedwideareanetworkcapabilities,whichwoulddemocratizeAI/MLsolutionsandcreatescalabilityforinnovations.
4)Stakeholdersbuy-inenabledbyStandards–trust,interoperability,security
Interoperabilityandcompliancewithstandardsbuildtrust.SecurestandardsleadtoAIReadiness,asglobalparticipationandconsensusdecidewhetherpre-standardresearchcouldbeadoptedintotherealworld.Vendorecosystems,includingopensource,arediverseindifferentdomainsofusecases.Goingbacktotransportationusecases,forexample,pedestriansafetyanddriversafetyareimportantconsiderations.AdoptionofAI-basedsolutionsthatinvolvehumanssuchaspedestriansanddriversrequiretheirtrustandperceptionofusingAI-basedsolutions.
5)DeveloperEcosystemcreatedviaOpensource
Anenergizedthird-partydeveloperecosystemnotonlyfast-tracksadoptionbutalsoenablesrevenuegeneration.
1
AIReady–AnalysisTowardsaStandardizedReadinessFramework
Developerecosystembootstrapsreferenceimplementationsofalgorithms,withbaselineandopen-sourcetoolsets.Third-partyapplications,ApplicationProgrammerInterfaces(API),andSoftwareDevelopmentKits(SDK)alongwithcrowd-sourcedsolutionsincreasethegeneralizabilityofAI/MLsolutionsacrossregionsanddomainsviatransferlearning.Hardwareimplementations,especiallyopen-sourceIoTboardsareevolvingtohosttheedgedataprocessing.ReferencenetworkimplementationsprovidedviaSG20[95]referenceismaturingtothelevelofwide-scaledeployments.IoTgatewayssuchasLoRagateway,SDKs,andAPIsenablethecreationanddeploymentofnewandinnovativeapplicationsthatenableSustainableDevelopmentGoals.
6)DatacollectionandmodelvalidationviaSandboxpilotexperimentalsetups
Manyusecasesrequireanexperimentalsandbox,createexperimentalsolutions,andvalidatethemusingexperimentalsetups.Whilereal-worlddatawouldimplyamorereliablesourceofdataandarealistictestingenvironment,notallscenarioscouldbeencounteredintherealworld,especiallywhencatastrophiceventsandrelateddataarerare.
Figure1capturestheabovereadinessfactorsintotheITUAIforGoodInfinityFrameworkforAIReadiness.
Figure1:ITUAIforGoodInfinityFrameworkforAIReadiness
Thisreportcapturesfivecasestudiesinclause3,whichbringfocustospecificaspectsorimpactsofthereadinessfactors.Themappingofreadinessfactorsisrepresentedinfigureswhichcalloutthespecificreadinessfactorswhichappliestothatcasestudy.Thecasestudiesinvolvemultipleusecases.Thisreportcovers30usecasesfromvariousdomains.Eachusecasemayinturnhavedifferentusecasescenarios.Clause4hasasummaryofusecasesalongwithacluster-wisedescriptionoftheusecases.Table1inClause5describesthequantifiablecharacteristicsrelatedtoeachreadinessfactor.Thesearederivedfromthe“DetailedanalysisoftheusecasesandAIimpactsontheusecases”inrelationtoAppendixAand“SpecificimpactsofthecharacteristicsofusecasesonStandardsFrameworksforAIreadinessrequirefurtherstudy”describedinAppendixB.
2
AIReady–AnalysisTowardsaStandardizedReadinessFramework
Thereportaudienceare:
(1)The“providers”areentitiesthatsupplyreadinessfactorssuchasdata,code,models,toolsets,andtraining.Theseproviders,whichcanbepublicorprivate,mightalsocontributetostandards.Theymayactassourcesordownstreamcollatorsofthesefactors.Examplesincludedomainexpertswhocollectandanalyzedatatocreatemodels,aswellastoolsetvendors,includingthoseofferingopen-sourcesolutions.Thereportaimstohelpprovidersidentifygapsinthesefactorsandtheirassociatedcharacteristics.
(2)The“users”areentitiesthatdeployorbenefitfromthereadinessfactors.Theyincludedecisionmakerswhoneedtodeterminewhichproviderwillofferthemaximumbenefit.Examplesofusersaregovernments,regulators,andotherentitieswithinspecificdomains.
Futurestepsandconclusionsaredescribedinclause6,mainlythreestepsareproposed(1)anopenrepositoryofdatawouldbesetuptoaddressthecorrespondingAIreadinessfactorfortheavailabilityofopendata,(2)thecreationofanexperimentationSandboxwithpre-populatedstandardcomplianttoolsetsandsimulatorsstudyingtheimpactofthereadinessfactorsand(3)derivationofopenmetricsandopensourcereferencetoolsetsformeasurementandvalidationofAIreadiness.Inaddition,aPilotAIReadinessPlugfestisplannedtogiveanopportunitytoexplaintheAIReadinessfactorstovariousstakeholdersandallowthemto“plugin”variousregionalfactorssuchasdata,models,standards,toolsets,andtraining.
TheresultsoftheplugfestalongwiththenextversionofthisreportwillbereleasedattheAIforGoodSummit2025.
Acknowledgment
WeacknowledgethesupportandareverygratefulfortheencouragementprovidedbytheKingdomofSaudiArabiaduringthisproject.
WeacknowledgealsotheworkdonebyITUFocusGrouponArtificialIntelligence(AI)andInternetofThings(IoT)forDigitalAgriculture(FG-AI4A)[96]andtheusecasespublishedbyITUAIforGoodInnovateforImpactstudy[70].
WealsoacknowledgetheeffortsoftheUNInteragencyWorkingGrouponAI,co-chairedbyITUandUNESCO,infacilitatingcoordinationwithotherUNagenciesthathavecomplementaryinitiatives.
3
AIReady–AnalysisTowardsaStandardizedReadinessFramework
2Introduction
Inthiscross-domainstudy,weanalyzedusecasesrelatedtotheuseofAIindifferentverticalssuchastrafficsafety,health,agriculture,disastermanagement,accessibility,publicservices,etcwithanaimtofindpatternsinapplicationsofAIindifferentscenarios.ThegoalwastoderiveastandardizeddataanalysismethodandmetricthatcouldbeappliedtomeasurethereadinesstouseAIforsolvingrelevantproblemsintheseusecases.OuranalysisoftheusecasesincludedthefollowingcharacteristicsofusecasestobeconsideredwhileevaluatingAIreadiness:Thedatausedineachusecase,domain-specificresearchneededintheusecase,deploymentwithinfrastructurerequirements,humanfactorssupportedbystandards,experimentationcapabilityviaasandbox,andecosystemcreationusingopensource.Thesecharacteristicsareanalyzedin“Table2–GeneralusecaseanalysisandAIimpacts”inAppendixA.
ThemainAIreadinessfactorsidentifiedinthisreportare:
1)Availabilityofopendata
TheKingdomofSaudiArabiasetupanOpenDataPlatform[3]providingdatasetstothepublictoenhanceaccesstoinformation,collaboration,andinnovation.ThemajorareasofdatasetavailabilityinthisopendataplatformareHealth,AgricultureandFishing,EducationandTraining,SocialServices,andTransportandCommunications.Thetransportationsysteminthemajorcitiesenablesadvancedusecasessuchastrackingvehicleswithexcessivespeedtoguaranteepedestriansafety,providingthebestdrivingroutestoreducethenumberoftrafficjams,andreducingthemortalityratecausedbycollision.TheseusecasesutilizediversedatasuchasimagerydatacollectedbyClosedcircuittelevision(CCTV),adetailedmapofthecity,trafficsignalinformation,andvehicleGlobalPositioningSystem(GPS)details.Thisisaprimeexampleofthecollectionandhostingofopendataandenablinganalyticsfortrafficsafety[28][19][44].
Opendataenablesprivateentrepreneurs,startups,andindustriestodevelopapplicationsordesignalgorithmstoachieveSustainableDevelopmentGoals(SDGs)suchassafetransportation.However,therearestillchallengesindatacollection,cleaning,andpreprocessingwhichhindertheopeningofdataforeveryone.Awell-designedopendatastrategywouldmakesurehigh-qualitydataisavailableforscholars,developers,andanalyststodesignsolutionsbasedonreal-worldproblems,thusenhancingtheimpactofAIonsociety.
2)AccesstoResearch
Theequalimportanceofdomain-specificresearchandtheapplicationofadvancedAImodelsinpredictingwithaccuracyisbroughtoutbyexamplessuchaspredictingintoxicationlevelsandmodelingsafedriving.Analysisofbiologicalandmedicaldatausingdomain-specific,andAI-specificresearchisimportantfortheusecase[8][10].
Forexample,whileassessingthesafedrivingbehaviorsundertheinfluence(seeClause4.2.2),notonlymonitoringofdriverbehaviorwasconsidered,butevenbiologicaldatasuchaschestmovementandbreathwerecollected.Chestmovementwascollected,andanalyzed,andthepredictedheartbeatwouldserveasreferencedataformappingthebloodalcohollevel.
Aprimeexampleofacollaborativeinitiativeisthe“AIforRoadSafety"[4]launchedbyITU,theUNSecretary-General'sSpecialEnvoyforRoadSafety,andtheUNEnvoyonTechnology.ThisinitiativepromotesanAI-enhanced“safesystem"approachtoreducefatalitiesbasedon
4
AIReady–AnalysisTowardsaStandardizedReadinessFramework
sixpillars:roadsafetymanagement,saferroadsandmobility,safervehicles,saferroadusers,post-crashresponse,andspeedcontrol.
GlobalinitiativessuchasCollaborationonIntelligentTransportationSystems(CITS)[9]intendtoprovideagloballyrecognizedforumforthecoordinationofaninternationallyaccepted,globallyharmonizedsetofIntelligentTransportationSystems(ITS)communicationstandards.
GlobalInitiativessuchasCITSallowcommunitiestoaccesscollaborativeresearchonadvancedtechnologiesrelatedtospecificusecases.
3)DeploymentcapabilityalongwithInfrastructure
NetworksinterconnectvariousnodesintheAI/MLpipeline[ITU-TY.3172]suchasthesourceofdata,pre-processing,model,anddistributionofinference.Forinstance,inagricultureusecases(seeclauses4.3.2and4.3.3)soilsensorsorwatersensorsshouldbedeployedinthefieldwithhighqualityandnumberssothatthevolumeandvarietyofdataaresufficienttotrainmodelswithaccuracy.Diseasedetectionforwheatcropsdiscussedin[38]providesanexemplarystudy.Visualcamerasaredeployed30-50centimetres(abouthalfthelengthofabaseballbat)awayfromthecropandcoverallareasoftheplants.Giventhefield'slargesurface,suchinfrastructuredeploymentcapabilityislinkedtothesolution'soverallcost.Softinfrastructuresuchashostedalgorithms,GraphicsProcessingUnit(GPU)computeplatforms,andnetworkprotocolstacksprovidebackendcomputingandcommunications.
Thesepracticaldeploymentaspectssuchasnetworks,sensors,visualcameras,GPUandcompute,formtheinfrastructurerequirementsthataffecttheAIreadiness.
Apartfromlabsimulationsandexperimentations,real-worldpilotsanddeploymentsupportareneededtovalidateinnovativesolutions.PeatlandForestusecase[48]whichaimstopredictthepotentialfire,providesanexemplarstudywherethedesignedalgorithmcouldbeappliedandvalidatedintherealworld.TheLoRagatewaywasdeployedtodistributetheworkflowandensurealow-latencynetwork.Inthesoilmoisturetestingusecase(seeclause4.3.4),edgestoragewasappliedtospeeduptheprocessandsecuretheaccuracyofthesystem.IntheIoT-basedcropmonitoringusecase(seeclause4.3.5),edgedataisacquired.
Ingeneral,computationavailableattheedge,eitherprovidedusingpublic,open,orprivateinfrastructurewouldenableverticalapplicationstopoolandhosttime-criticalapplicationsclosertotheuser.Coordinationofsatellitedata[51]andtheadditionofgeospatialcapabilitiesandinfrastructurewouldcreatevalueandstimulatetheeconomyaroundgeospatialdata.Cloudhostingofopendata,availabilityofschemes,policiesinmachine-readableformat[49],openportals,andreal-timeupdatesfromagencies[50]includingvisualizationdashboardsandmobileappshelpsinbetterintegrationofAIinusecases.
4)Stakeholdersbuy-inenabledbyStandards
Interoperabilityamongdifferentsolutionprovidersbringsthechoiceofdifferentvendors,irrespectiveofopenorproprietarysolutions,tosuchprimaryactors.Standardsplayanimportantroleinensuringcomplianceandinteroperability.
Forexample,primaryactorsintheagriculturedomainarethefarmers[14][35]whotaketheinitiativeinadoptingInternetofThings(IoT)-basedsensorsfordatacollection,edgedevicesforanalytics,andlow-powercommunicationsystems,whichimpliesthattheirtrustandwillingnesstoonboardareimportant.
5
AIReady–AnalysisTowardsaStandardizedReadinessFramework
Asanexample,anadvanceddrivingassistancesystem(seeclause4.2.3)involvesdifferentcarmanufacturerswithdifferentimplementationswhomightadoptdifferentparameters,thedivergenceinimplementationmightcreatelock-insituationsforuserspreventingflexibilityandchoiceofvendors.Additionally,issuesconcerningdataprivacy,dataprotection,andresponsibilitiesaretobestudiedcollaborativelyinopenstandardssuchasthosedevelopedbyITU,whichwillensuresecure,trustable,andinteroperableend-to-endsolutions.
5)DeveloperEcosystemcreatedviaOpensource
Cloud-hostedsolutionswithexposedAPIsforsubscribing/publishingdatafromportals[49]wouldcreatevaluefortheoverallindustryandleadtoinnovativeapplicationsthatsolvereal-worldproblemsusingAI/ML.Aprimeexampleisresearchsolutionsforsatellitedatausageinthefirepropagationmodel[51].
Referencesolutions,openmodels,andtoolsetscreatedinopensourcehelpinmobilizingresearchandinnovation,actingasabaselineforAIintegration,whichcouldbeextended,enhancedoroptimizedbasedonspecificusecaserequirements.SolutionspublishedasaresultofITUAI/MLChallengessuchastheTinyMLChallenge[66]aregoodexamplesofopen,published,anddeveloper-drivensolutions.
6)DatacollectionandmodelvalidationviaSandboxpilotexperimentalsetups
ITUdefinedMLSandboxin[ITU-TY.3172]anddescribedthedetailsofSandboxarchitecturesin[ITU-TY.3181].Inessence,Sandboxisanenvironmentinwhichmachinelearningmodelscanbetrainedandtheireffectstestedandevaluatedbeforedeployingintherealworld.Thishassinceseenwiderapplicationsinvarioususecases.
ImplementingcontinuousimprovementofmodelsusingfeedbackandoptimizationsintheSandboxhelpstooptimizeessentialtaskswithindisaster-strickenareas[52].Unmannedaerialvehicles(UAVs)canlearnandadjusttheiroperations(includingroutenavigation,returningtochargingstations,anddatadetectionandtransmission)basedonfeedbackfromtheenvironment.
Forexample,trafficregulationscenariosusingvisualcameras[36]andothersensorsuseAI/MLfeedbackloops,whichcollectdata,produceinferences,createactionrecommendationsandpolicyapplications,andaretestedandvalidatedusingpre-builttrafficplansforspecificoccasions.
PilotsetupsviaSandboxescanhelpinassimilatinglocalcommunitiesandutilitiesintothesolution.Forexample,in[51],firedetectionandpropagationmodelsaretestedandvalidated,andalarmsareusedtoprovideadvancedinformationtolocalcommunitiesandutilities.
6
AIReady–AnalysisTowardsaStandardizedReadinessFramework
3CaseStudies
Aspartofourstudiesonusecases,andourdetaileddiscussionswiththeusecaseauthors,wehaveselectedcertaincasestudieswhichbringoutthebenefits(orlackofit)forincreasing/measuringAIreadiness.EspeciallywefocusonthosecasestudiesthatutilizethereadinessfactorsmentionedinSection1above.Inaddition,welookforclearmetadata,supportingreferences,andpublishedresearchpapers,withexperimentationthatcanpracticallyshowcasethebenefitsofAIreadinessontheseterms.
Eachcasestudyismappedtothe6readinessfactorslistedinclause2aboveandtheinstancesofthereadinessfactorsareexplainedforeachcasestudy.
3.1CaseStudy-1:IoT-basedEnvironmentMonitoringBasedon
StandardIndices
Thiscasestudyinvolvesasetofusecaseswhichmonitorenvironmentparameterssuchassoilsensor,piezometers,andwaterlevelsensorsetc.andinferstandardizedindicesforspecificusecasese.g.groundwaterlevel(GWL)mappedtodroughtcodes(DC).Theareaofcoveragemaybequitelarge,forexample,multiplehectorsofforestland.Verificationofsenseddataandinferreddatawithgroundtruthincollaborationwithexpertsisanessentialcharacteristicofsuchusecases.Communicationnetworks,includingdataformatconversionsareimportantstandardrequirementsforsuchusecases.
Net-Peat-Zero[48]:NetworkedAssociationofSoutheastAsianNations(ASEAN)PeatlandForestforNet-ZerodeliveredbyUniversityPutraMalaysiaisanexcellentexampleofausecasewithreal-worlddeploymentanditsapplicationofopendata,whichisaccessibletoeveryone.
ThisusecasepresentsthepossibilitytoleverageAIinpredictingForestFireinpeatlandareasinSouthAsia.Animprovedtropicalpeatlandfireweatherindex(FWI)systemisproposed,bycombiningthegroundwaterlevel(GWL)withthedroughtcode(DC).Tomonitorthepeatland,aLoRa-basedIoTsystemisused,andsensorssuchassoilsensors,piezometersensors,waterlevelsensors,andweathersensorsareused,withtheexpectationthatintegralmeteorologicalinformationcouldbedetected.Allthedatamentionedabovecouldbecross-checkedwiththeonesusedbytheMalaysianMeteorologicalDepartment(METMalaysia),whichmeansthatthedatacollectedbytheIoTsystemisauthenticandreadytobeprocessed.
Inaddition,animprovedmodeltoapplytheGWLisproposedfortheFWIformulationintheFireDangerRatingSystem(FDRS).Specifically,DCisformulatedusingGWL,insteadoftemperatureandrainintheexistingmodel.FromtheGWLaggregatedfromtheIoTsystem,theparameterispredictedusingmachinelearningbasedonaneuralnetwork.TheresultsshowthattheDCcalculatedfromtheIoTsystemhasahighcorre
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中秋節創意活動策劃方案模板
- 2025年度體育課題工作方案
- 水泥業務員工作方案演講稿2025年
- 汽車使用與維護 課件 項目四 傳動系統的使用與維護4-2 驅動軸的檢查與維護
- 2025年電子測試儀表項目可行性研究報告
- 2025年電動平行修整器項目可行性研究報告
- 2025年琥珀蜂蜜核桃仁項目可行性研究報告
- 2025年玳瑁指甲項目可行性研究報告
- 2025年特大雙色名流口杯項目可行性研究報告
- 西安海棠職業學院《色彩造型2(風景)》2023-2024學年第二學期期末試卷
- 2015-2024北京中考真題英語匯編:閱讀單選CD篇
- 酒店客房6S管理服務標準
- 游戲行業虛擬充值卡采購合同
- DB11-T 1953-2022 成品糧儲藏技術規范
- 四旋翼無人機飛行姿態的幾種改進控制算法研究的任務書
- 《機械制圖(多學時)》中職全套教學課件
- 駱駝祥子考點單選題100道及答案解析
- 人教部編版七年級語文上冊《散步》示范課教學課件
- 李白《南陵別兒童入京》課件
- 數學新課程標準解讀(2)聚焦核心素養關注終身發展課件
- 2024至2030年中國聲樂器樂培訓行業發展運行現狀及投資潛力預測報告
評論
0/150
提交評論