浙江省寧波市鄞州區諾丁漢大學附中2025屆高二數學第一學期期末復習檢測模擬試題含解析_第1頁
浙江省寧波市鄞州區諾丁漢大學附中2025屆高二數學第一學期期末復習檢測模擬試題含解析_第2頁
浙江省寧波市鄞州區諾丁漢大學附中2025屆高二數學第一學期期末復習檢測模擬試題含解析_第3頁
浙江省寧波市鄞州區諾丁漢大學附中2025屆高二數學第一學期期末復習檢測模擬試題含解析_第4頁
浙江省寧波市鄞州區諾丁漢大學附中2025屆高二數學第一學期期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省寧波市鄞州區諾丁漢大學附中2025屆高二數學第一學期期末復習檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過兩點、的直線的傾斜角為,則的值為()A.或 B.C. D.2.已知F(3,0)是橢圓的一個焦點,過F且垂直x軸的弦長為,則該橢圓的方程為()A.+=1 B.+=1C.+=1 D.+=13.某次生物實驗6個小組的耗材質量(單位:千克)分別為1.71,1.58,1.63,1.43,1.85,1.67,則這組數據的中位數是()A.1.63 B.1.67C.1.64 D.1.654.已知各項均為正數的等比數列滿足,若存在兩項,使得,則的最小值為()A.4 B.C. D.95.橢圓上的一點M到其左焦點的距離為2,N是的中點,則等于()A.1 B.2C.4 D.86.過拋物線焦點的直線與拋物線交于兩點,,拋物線的準線與軸交于點,則的面積為()A. B.C. D.7.已知拋物線,為坐標原點,以為圓心的圓交拋物線于、兩點,交準線于、兩點,若,,則拋物線方程為()A. B.C. D.8.中秋節吃月餅是我國的傳統習俗,若一盤中共有兩種月餅,其中5塊五仁月餅、6塊棗泥月餅,現從盤中任取3塊,在取到的都是同種月餅的條件下,都是五仁月餅的概率是()A B.C. D.9.以下四個命題中,正確的是()A.若,則三點共線B.C.為直角三角形的充要條件是D.若為空間的一個基底,則構成空間的另一個基底10.下列命題中,真命題的個數為()(1)是為雙曲線的充要條件;(2)若,則;(3)若,,則;(4)橢圓上的點距點最近的距離為;A.個 B.個C.個 D.個11.已知分別是雙曲線的左、右焦點,動點P在雙曲線的左支上,點Q為圓上一動點,則的最小值為()A.6 B.7C. D.512.若圓與直線相切,則實數的值為()A. B.或3C. D.或二、填空題:本題共4小題,每小題5分,共20分。13.曲線在處的切線方程為______.14.若雙曲線的漸近線與圓相切,則該雙曲線的實軸長為______15.已知離心率為,且對稱軸都在坐標軸上的雙曲線C過點,過雙曲線C上任意一點P,向雙曲線C的兩條漸近線分別引垂線,垂足分別是A,B,點O為坐標原點,則四邊形OAPB的面積為______16.設公差的等差數列的前項和為,已知,且,,成等比數列,則的最小值為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知直線,拋物線.(1)與有公共點,求的取值范圍;(2)是坐標原點,過的焦點且與交于兩點,求的面積.18.(12分)已知函數.(1)證明:;(2)若函數有兩個零點,求實數的取值范圍.19.(12分)如圖,已知頂點,,動點分別在軸,軸上移動,延長至點,使得,且.(1)求動點的軌跡;(2)過點分別作直線交曲線于兩點,若直線的傾斜角互補,證明:直線的斜率為定值;(3)過點分別作直線交曲線于兩點,若,直線是否經過定點?若是,求出該定點,若不是,說明理由.20.(12分)如圖,在四棱錐中,為平行四邊形,,平面,且,點是的中點.(1)求證:平面;(2)在線段上(不含端點)是否存在一點,使得二面角的余弦值為?若存在,確定的位置;若不存在,請說明理由.21.(12分)已知函數滿足.(1)求的解析式,并判斷其奇偶性;(2)若對任意,不等式恒成立,求實數a的取值范圍.22.(10分)已知拋物線的方程為,點,過點的直線交拋物線于,兩點(1)是否為定值?若是,求出該定值;若不是,說明理由;(2)若點是直線上的動點,且,求面積的最小值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】利用斜率公式可得出關于實數的等式與不等式,由此可解得實數的值.詳解】由斜率公式可得,即,解得.故選:D.2、C【解析】根據已知條件求得,由此求得橢圓的方程.【詳解】依題意,所以橢圓方程為.故選:C3、D【解析】將已有數據從小到大排序,根據中位數的定義確定該組數據的中位數.【詳解】由題設,將數據從小到大排序可得:,∴中位數為.故選:D.4、C【解析】由求得,代入求得,利用基本不等式求出它的最小值【詳解】因為各項均為正數的等比數列滿足,可得,即解得或(舍去)∵,,∴=當且僅當,即m=2,n=4時,等號成立故的最小值等于.故選:C【點睛】方法點睛:本題主要考查等比數列的通項公式和基本不等式的應用,解題的關鍵是常量代換的技巧,所謂常量代換,就是把一個常數用代數式來代替,如,再把常數6代換成已知中的m+n,即.常量代換是基本不等式里常用的一個技巧,可以優化解題,提高解題效率.5、C【解析】先利用橢圓定義得到,再利用中位線定理得即可.【詳解】由橢圓方程,得,由橢圓定義得,又,,又為的中點,為的中點,線段為中位線,∴.故選:C.6、B【解析】畫出圖形,利用已知條件結合拋物線的定義求解邊長CF,BK,然后求解三角形的面積即可【詳解】如圖,設拋物線的準線為,過作于,過作于,過作于,設,則根據拋物線的定義可得,,,的面積為,故選:.7、C【解析】設圓的半徑為,根據已知條件可得出關于的方程,求出正數的值,即可得出拋物線的方程.【詳解】設圓的半徑為,拋物線的準線方程為,由勾股定理可得,因為,將代入拋物線方程得,可得,不妨設點,則,所以,,解得,因此,拋物線的方程為.故選:C.8、C【解析】分別求出取到3塊月餅都是同種月餅和取到3塊月餅都是五仁月餅的種數,再根據概率公式即可得解.【詳解】解:由題意可得,取到3塊月餅都是同種月餅有種情況,取到3塊月餅都是五仁月餅有種情況,所以在取到的都是同種月餅的條件下,都是五仁月餅的概率是.故選:C.9、D【解析】利用向量共線的推論可判斷A,利用數量積的定義可判斷B,利用充要條件的概念可判斷C,利用基底的概念可判斷D.【詳解】對于A,若,,所以三點不共線,故A錯誤;對于B,因為,故B錯誤;對于C,由可推出為直角三角形,由為直角三角形,推不出,所以為直角三角形的充分不必要條件是,故C錯誤;對于D,若為空間的一個基底,則不共面,若不能構成空間的一個基底,設,整理可得,即共面,與不共面矛盾,所以能構成空間的另一個基底,故D正確.故選:D.10、A【解析】利用方程表示雙曲線求出的取值范圍,利用集合的包含關系可判斷(1)的正誤;直接判斷命題的正誤,可判斷(2)的正誤;利用空間向量垂直的坐標表示可判斷(3)的正誤;利用橢圓的有界性可判斷(4)的正誤.【詳解】對于(1),若曲線為雙曲線,則,即,解得或,因為或,因此,是為雙曲線的充分不必要條件,(1)錯;對于(2),若,則或,(2)錯;對于(3),,則,(3)對;對于(4),設點為橢圓上一點,則且,則點到點的距離為,(4)錯.故選:A.11、A【解析】由雙曲線的定義及三角形的幾何性質可求解.【詳解】如圖,圓的圓心為,半徑為1,,,當,,三點共線時,最小,最小值為,而,所以故選:A12、D【解析】利用圓心到直線的距離等于半徑可得答案.【詳解】若圓與直線相切,則到直線的距離為,所以,解得,或.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求出函數的導函數,然后結合導數的幾何意義求解即可.【詳解】解:由,得,則,即當時,,所以切線方程為:,故答案為:.【點睛】本題考查了曲線在某點處的切線方程的求法,屬基礎題.14、【解析】由雙曲線方程寫出漸近線,根據相切關系,結合點線距離公式求參數a,即可確定實軸長.【詳解】由題設,漸近線方程為,且圓心為,半徑為1,所以,由相切關系知:,可得,又,即,所以雙曲線的實軸長為.故答案為:15、2【解析】由離心率為,∴雙曲線為等軸雙曲線,設雙曲線方程為,可得雙曲線方程為,設,則到兩漸近線的距離為,,從而可求四邊形的面積【詳解】由離心率為,∴雙曲線為等軸雙曲線,設雙曲線方程為,又雙曲線過點,,∴,故雙曲線方程為,∴漸近線方程為,設,則到兩漸近線的距離為,,且,∵漸近線方程為,∴四邊形為矩形,∴四邊形的面積為故答案為:216、##0.4【解析】應用等比中項的性質及等差數列通項公式求公差d,進而寫出等差數列的通項公式、前n項和公式,再求目標式的最小值.【詳解】由題設,,則,整理得,又,解得,故,,所以,故當時目標式有最小值為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)聯立直線l與拋物線C的方程消去x,借助判別式建立不等式求解作答.(2)利用(1)中信息求出點縱坐標差的絕對值即可計算作答.【小問1詳解】依題意,由消去x并整理得:,因與有公共點,則,解得:,所以的取值范圍是.【小問2詳解】拋物線的焦點,則,設,由(1)知,,則,因此,,所以的面積.18、(1)證明見解析;(2).【解析】(1)令,求導得到函數的增區間為,減區間為,故,得到證明.(2),討論和兩種情況,計算函數的單調區間得到,解得答案.【詳解】(1)令,有,令可得,故函數的增區間為,減區間為,,故有.(2)由①當時,,此時函數的減區間為,沒有增區間;②當時,令可得,此時函數的增區間為,減區間為.若函數有兩個零點,必須且,可得,此時,又由,當時,由(1)有,取時,顯然有,當時,故函數有兩個零點時,實數的取值范圍為.【點睛】本題考查了利用導數證明不等式,根據零點求參數,意在考查學生的計算能力和應用能力.19、(1);(2)證明見解析;(3).【解析】(1)設點M,P,Q的坐標,將向量進行坐標化,整理即可得軌跡方程;(2)設點,,直線的傾斜角互補,則兩直線斜率互為相反數,用斜率公式計算得到,即可計算kAB;(3)若,由兩直線斜率積為-1,可得到關于與的等量關系,寫出直線AB的方程,將等量關系代入直線方程整理可得直線AB經過的定點【詳解】(1)設,,.由,得,即.因為,所以,所以.所以動點的軌跡為拋物線,其方程為.(2)證明:設點,,若直線的傾斜角互補,則兩直線斜率互為相反數,又,,所以,,整理得,所以.(3)因為,所以,即,①直線的方程為:,整理得:,②將①代入②得,即,當時,即直線經過定點.【點睛】本題考查直接法求軌跡方程,考查直線斜率為定值的求法和直線恒過定點問題.20、(1)見解析(2)存在,【解析】(1)連接交于點,由三角形中位線性質知,由線面平行判定定理證得結論;(2)以為原點建立空間直角坐標系,假設,可用表示出點坐標;根據二面角的向量求法可根據二面角的余弦值構造出關于的方程,從而解得結果.【詳解】(1)連接交于點,連接,四邊形為平行四邊形,為中點,又為中點,,平面,平面,平面;(2)平面,,兩兩互相垂直,則以為坐標原點,可建立如下圖所示的空間直角坐標系:則,,,,,,設,且,則,,即,設平面的法向量,又,,則,令,則,,;設平面的一個法向量,又,,則,令,則,,;,解得:或,二面角的余弦值為,二面角為銳二面角,不滿足題意,舍去,即.在線段上存在點,時,二面角的余弦值為.【點睛】本題考查立體幾何中的線面平行關系的證明、存在性問題的求解;求解存在性問題的關鍵是能夠利用共線向量的方式將所求點坐標表示出來,進而利用二面角的向量求法構造方程;易錯點是忽略二面角的范圍,造成參數值求解錯誤.21、(1),是奇函數(2)【解析】(1)由求出,進而求得的解析式,利用奇偶函數的定義判斷函數的奇偶性即可;(2)根據冪函數的單調性可得函數的單調性,求出函數的最小值,將不等式恒成立轉化為對任意使得恒成立即可.【小問1詳解】因為,所以,所以.所以.的定義城為,且,所以是奇函數.【小問2詳解】因為,在上均為增函數,所以在上增函數,所以.對任意,不等式恒成立,則,所以,即實數a的取值范固為.22、(1)是,;(2)【解析】(1)由題意設出所在直線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論