




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
廣東湛江市大成中學(xué)2025屆數(shù)學(xué)高二上期末調(diào)研試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知直線:和直線:,拋物線上一動點(diǎn)P到直線和直線的距離之和的最小值是()A. B.C. D.2.若等比數(shù)列中,,,那么()A.20 B.18C.16 D.143.已知是兩條不同的直線,是兩個不同的平面,則下列結(jié)論正確的是()A.若,則 B.若,則C.若,則 D.若,則4.若圓的半徑為,則實(shí)數(shù)()A. B.-1C.1 D.5.函數(shù)在上的最大值是A. B.C. D.6.已知雙曲線的離心率為2,則()A.2 B.C. D.17.已知命題p:?x>2,x2>2x,命題q:?x0∈R,ln(x02+1)<0,則下列命題是真命題的是()A.p∧ B.p∨C.p∧q D.p∨q8.阿基米德是古希臘著名的數(shù)學(xué)家、物理學(xué)家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積,已知在平面直角坐標(biāo)系中,橢圓的面積為,兩焦點(diǎn)與短軸的一個端點(diǎn)構(gòu)成等邊三角形,則橢圓的標(biāo)準(zhǔn)方程是()A. B.C. D.9.已知數(shù)列滿足,且,,則()A. B.C. D.10.已知數(shù)列中,其前項(xiàng)和為,且滿足,數(shù)列的前項(xiàng)和為,若對恒成立,則實(shí)數(shù)的值可以是()A. B.2C.3 D.11.已知為虛數(shù)單位,復(fù)數(shù)滿足為純虛數(shù),則的虛部為()A. B.C. D.12.直線在軸上的截距為,在軸上的截距為,則有()A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.橢圓上一點(diǎn)到兩個焦點(diǎn)的距離之和等于,則的標(biāo)準(zhǔn)方程為______.14.點(diǎn)到拋物線上的點(diǎn)的距離的最小值為________.15.已知直線,,若,則實(shí)數(shù)______16.函數(shù),若,則的值等于_______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)新型冠狀病毒的傳染主要是人與人之間進(jìn)行傳播,感染人群年齡大多數(shù)是歲以上人群.該病毒進(jìn)入人體后有潛伏期.潛伏期是指病原體侵入人體至最早出現(xiàn)臨床癥狀的這段時間.潛伏期越長,感染到他人的可能性越高.現(xiàn)對個病例的潛伏期(單位:天)進(jìn)行調(diào)查,統(tǒng)計發(fā)現(xiàn)潛伏期平均數(shù)為,方差為.如果認(rèn)為超過天的潛伏期屬于“長潛伏期”,按照年齡統(tǒng)計樣本,得到下面的列聯(lián)表:年齡/人數(shù)長期潛伏非長期潛伏50歲以上6022050歲及50歲以下4080(1)是否有的把握認(rèn)為“長期潛伏”與年齡有關(guān);(2)假設(shè)潛伏期服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.(i)現(xiàn)在很多省市對入境旅客一律要求隔離天,請用概率知識解釋其合理性;(ii)以題目中的樣本頻率估計概率,設(shè)個病例中恰有個屬于“長期潛伏”的概率是,當(dāng)為何值時,取得最大值.附:0.10.050.0102.7063.8416.635若,則,,.18.(12分)設(shè)橢圓:()的離心率為,橢圓上一點(diǎn)到左右兩個焦點(diǎn)、的距離之和是4.(1)求橢圓的方程;(2)已知過的直線與橢圓交于、兩點(diǎn),且兩點(diǎn)與左右頂點(diǎn)不重合,若,求四邊形面積的最大值.19.(12分)已知雙曲線C:的離心率為,過點(diǎn)作垂直于x軸的直線截雙曲線C所得弦長為(1)求雙曲線C的方程;(2)直線()與該雙曲線C交于不同的兩點(diǎn)A,B,且A,B兩點(diǎn)都在以點(diǎn)為圓心的同一圓上,求m的取值范圍20.(12分)已知數(shù)列的前項(xiàng)和為,且滿足,,成等比數(shù)列,.(1)求數(shù)列的通項(xiàng)公式;(2)令,求數(shù)列的前項(xiàng)和.21.(12分)如圖,在四棱錐中,平面,底面為菱形,且,,分別為,的中點(diǎn)(Ⅰ)證明:平面;(Ⅱ)點(diǎn)在棱上,且,證明:平面22.(10分)已知點(diǎn),圓.(1)若直線l過點(diǎn)M,且被圓C截得的弦長為,求直線l的方程;(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)N在圓C上運(yùn)動,線段的中點(diǎn)為P,求點(diǎn)P的軌跡方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)已知條件,結(jié)合拋物線的定義,可得點(diǎn)P到直線和直線的距離之和,當(dāng)B,P,F(xiàn)三點(diǎn)共線時,最小,再結(jié)合點(diǎn)到直線的距離公式,即可求解【詳解】∵拋物線,∴拋物線的準(zhǔn)線為,焦點(diǎn)為,∴點(diǎn)P到準(zhǔn)線的距離PA等于點(diǎn)P到焦點(diǎn)F的距離PF,即,∴點(diǎn)P到直線和直線的距離之和,∴當(dāng)B,P,F(xiàn)三點(diǎn)共線時,最小,∵,∴,∴點(diǎn)P到直線和直線的距離之和的最小值為故選:A2、B【解析】利用等比數(shù)列的基本量進(jìn)行計算即可【詳解】設(shè)等比數(shù)列的公比為,則,所以故選:B3、C【解析】由空間中直線與直線、直線與平面、平面與平面的位置關(guān)系,逐一核對四個選項(xiàng)得答案【詳解】解:對于A:若,則或,故A錯誤;對于B:若,則或與相交,故B錯誤;對于C:若,根據(jù)面面垂直的判定定理可得,故C正確;對于D:若則與平行、相交、或異面,故D錯誤;故選:C4、B【解析】將圓的方程化為標(biāo)準(zhǔn)方程,即可求出半徑的表達(dá)式,從而可求出的值.【詳解】由題意,圓的方程可化為,所以半徑為,解得.故選:B.【點(diǎn)睛】本題考查圓的方程,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.5、D【解析】求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可,結(jié)合函數(shù)的單調(diào)性求出的最大值即可【詳解】函數(shù)的導(dǎo)數(shù)令可得,可得上單調(diào)遞增,在單調(diào)遞減,函數(shù)在上的最大值是故選D【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性、最值問題,是一道中檔題6、D【解析】由雙曲線的性質(zhì),直接表示離心率,求.【詳解】由雙曲線方程可知,因?yàn)椋裕獾茫海郑?故選:D【點(diǎn)睛】本題考查雙曲線基本性質(zhì),意在考查數(shù)形結(jié)合分析問題和解決問題能力,屬于中檔題型,一般求雙曲線離心率的方法:
直接法:直接求出,然后利用公式求解;2.公式法:,3.構(gòu)造法:根據(jù)條件,可構(gòu)造出的齊次方程,通過等式兩邊同時除以,進(jìn)而得到關(guān)于的方程.7、B【解析】取x=4,得出命題p是假命題,由對數(shù)的運(yùn)算得出命題q是假命題,再判斷選項(xiàng).【詳解】命題p:?x>2,x2>2x,是假命題,例如取x=4,則42=24;命題q:?x0∈R,ln(x02+1)<0,是假命題,∵?x∈R,ln(x2+1)≥0.則下列命題是真命題的是.故選:B.8、A【解析】由橢圓的面積為和兩焦點(diǎn)與短軸的一個端點(diǎn)構(gòu)成等邊三角形,得到求解.【詳解】由題意得,解得,所以橢圓的標(biāo)準(zhǔn)方程是.故選:A9、A【解析】由已知兩個不等式,利用“兩邊夾”思想求得,然后利用累加法可求得【詳解】∵,∴,∴,又,∴,即,∴故選:A【點(diǎn)睛】本題考查數(shù)列的遞推式,由遞推式的特征,采用累加法求得數(shù)列的項(xiàng).解題關(guān)鍵是利用“兩邊夾”思想求解10、D【解析】由求出,從而可以求,再根據(jù)已知條件不等式恒成立,可以進(jìn)行適當(dāng)放大即可.【詳解】若n=1,則,故;若,則由得,故,所以,,又因?yàn)閷愠闪ⅲ?dāng)時,則恒成立,當(dāng)時,,所以,,,若n為奇數(shù),則;若n為偶數(shù),則,所以所以,對恒成立,必須滿足.故選:D11、D【解析】先設(shè),代入化簡,由純虛數(shù)定義求出,即可求解.【詳解】設(shè),所以,因?yàn)闉榧兲摂?shù),所以,解得,所以的虛部為:.故選:D.12、B【解析】將直線方程的一般形式化為截距式,由此可得其在x軸和y軸上的截距.【詳解】直線方程化成截距式為,所以,故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)橢圓定義求出其長半軸長,再結(jié)合焦點(diǎn)坐標(biāo)即可計算作答.【詳解】因橢圓上一點(diǎn)到兩個焦點(diǎn)的距離之和等于,則該橢圓長半軸長,而半焦距,于是得短半軸長b,有,所以的標(biāo)準(zhǔn)方程為.故答案為:14、【解析】設(shè)出拋物線上點(diǎn)的坐標(biāo),利用兩點(diǎn)間距離公式,配方求出最小值.【詳解】設(shè)拋物線上的點(diǎn)坐標(biāo),則,當(dāng)時,取得最小值,且最小值為.故答案為:15、【解析】由直線垂直可得到關(guān)于實(shí)數(shù)a的方程,解方程即可.【詳解】由直線垂直可得:,解得:.故答案為:16、【解析】對函數(shù)進(jìn)行求導(dǎo),把代入導(dǎo)函數(shù)中,化簡即可求出的值.【詳解】函數(shù).故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)有;(2)(i)答案見解析;(ii)250.【解析】(1)根據(jù)列聯(lián)表中的數(shù)據(jù),利用求得,與臨界表值對比下結(jié)論;(2)(ⅰ)根據(jù),利用小概率事件判斷;(ⅱ)易得一個患者屬于“長潛伏期”的概率是,進(jìn)而得到,然后判斷其單調(diào)性求解.【詳解】(1)依題意有,由于,故有的把握認(rèn)為“長期潛伏”與年齡有關(guān);(2)(ⅰ)若潛伏期,由,得知潛伏期超過天的概率很低,因此隔離天是合理的;(ⅱ)由于個病例中有個屬于長潛伏期,若以樣本頻率估計概率,一個患者屬于“長潛伏期”的概率是,于是,則,,當(dāng)時,;當(dāng)時,;∴,.故當(dāng)時,取得最大值.【點(diǎn)睛】方法點(diǎn)睛:利用獨(dú)立重復(fù)試驗(yàn)概率公式可以簡化求概率的過程,但需要注意檢查該概率模型是否滿足公式的三個條件:(1)在一次試驗(yàn)中某事件A發(fā)生的概率是一個常數(shù)p;(2)n次試驗(yàn)不僅是在完全相同的情況下進(jìn)行的重復(fù)試驗(yàn),而且各次試驗(yàn)的結(jié)果是相互獨(dú)立的;(3)該公式表示n次試驗(yàn)中事件A恰好發(fā)生了k次的概率18、(1);(2)6.【解析】(1)本小題根據(jù)題意先求,,,再求橢圓的標(biāo)準(zhǔn)方程;(2)本小題先設(shè)過的直線的方程,再根據(jù)題意表示出四邊形的面積,最后求最值即可.【詳解】解:(1)∵橢圓上一點(diǎn)到左右兩個焦點(diǎn)、的距離之和是4,∴即,∵,∴,又∵,∴.∴橢圓的標(biāo)準(zhǔn)方程為;(2)設(shè)點(diǎn)、的坐標(biāo)為,,因?yàn)橹本€過點(diǎn),所以可設(shè)直線方程為,聯(lián)立方程,消去可得:,化簡整理得,其中,所以,,因?yàn)椋运倪呅问瞧叫兴倪呅危O(shè)平面四邊形的面積為,則,設(shè),則(),所以,因?yàn)椋裕运倪呅蚊娣e的最大值為6.【點(diǎn)睛】本題考查橢圓的標(biāo)準(zhǔn)方程,相交弦等問題,是偏難題.19、(1)(2)或【解析】(1)利用雙曲線離心率、點(diǎn)在雙曲線上及得到關(guān)于、、的方程組,進(jìn)而求出雙曲線的標(biāo)準(zhǔn)方程;(2)聯(lián)立直線和雙曲線的方程,得到關(guān)于的一元二次方程,利用直線和雙曲線的位置關(guān)系、根與系數(shù)的關(guān)系得到兩個交點(diǎn)坐標(biāo)間的關(guān)系,利用A,B兩點(diǎn)都在以點(diǎn)為圓心的同一圓上得到,再利用向量的數(shù)量積為0得到、的關(guān)系,進(jìn)而消去得到的不等式進(jìn)行求解.【小問1詳解】解:因?yàn)檫^點(diǎn)作垂直于x軸的直線截雙曲線C所得弦長為,所以點(diǎn)在雙曲線上,由題意,得,解得,,,即雙曲線的標(biāo)準(zhǔn)方程為.【小問2詳解】解:聯(lián)立,得,因?yàn)橹本€與該雙曲線C交于不同的兩點(diǎn),所以且,即且,設(shè),,的中點(diǎn),則,,因?yàn)锳,B兩點(diǎn)都在以點(diǎn)為圓心的同一圓上,所以,即,因?yàn)椋裕矗瑢⒋耄茫獾没颍磎的取值范圍為或.20、(1);(2).【解析】(1)由可得數(shù)列是公差為2的等差數(shù)列,再由,,成等比數(shù)列,列方程可求出,從而可求得數(shù)列的通項(xiàng)公式;(2)由(1)可得,然后利用裂項(xiàng)相消求和法可求出【詳解】解:(1)由,可得,即數(shù)列是公差為2的等差數(shù)列.所以,,.由題意得,解得,所以.(2)由(1)可得,所以數(shù)列的前項(xiàng)和.21、(Ⅰ)證明見解析(Ⅱ)證明見解析【解析】(Ⅰ)證明和得到平面.(Ⅱ)根據(jù)相似得到證明平面.【詳解】(Ⅰ)如圖,連接.∵底面為菱形,且,∴三角形正三角形.∵為的中點(diǎn),∴.又∵平面,平面,∴.∵,平面,∴平面.(Ⅱ)連接交于點(diǎn),連接.∵為的中點(diǎn),∴在底面中,,∴.∴,∴在三角形中,.又∵平面,平面,∴平面.【點(diǎn)睛】本題考查了線面垂直和線面平行,意在考查學(xué)生的空間想象能力和推斷能力.22、(1)或(2)【解析】(1)由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 大慶師范學(xué)院《嵌入式系統(tǒng)原理與接口技術(shù)含實(shí)驗(yàn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 天津仁愛學(xué)院《教育則里與評價》2023-2024學(xué)年第二學(xué)期期末試卷
- 武漢鐵路橋梁職業(yè)學(xué)院《第二外語(日、韓)》2023-2024學(xué)年第二學(xué)期期末試卷
- 湖北文理學(xué)院《獸醫(yī)影像診斷學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 山西運(yùn)城農(nóng)業(yè)職業(yè)技術(shù)學(xué)院《學(xué)生科研指導(dǎo)》2023-2024學(xué)年第二學(xué)期期末試卷
- 福建信息職業(yè)技術(shù)學(xué)院《工程制圖與實(shí)驗(yàn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 蘭州交通大學(xué)《公司金融》2023-2024學(xué)年第二學(xué)期期末試卷
- 連云港師范高等專科學(xué)校《初等數(shù)理天文》2023-2024學(xué)年第二學(xué)期期末試卷
- 黔南民族師范學(xué)院《歌曲作法與小樂隊(duì)編配1》2023-2024學(xué)年第二學(xué)期期末試卷
- 婁底職業(yè)技術(shù)學(xué)院《中學(xué)地理課程標(biāo)準(zhǔn)與地理教學(xué)案例分析》2023-2024學(xué)年第二學(xué)期期末試卷
- 2024年浙江省仙居縣事業(yè)單位公開招聘教師崗筆試題帶答案
- 五年級數(shù)學(xué)下試卷及答案
- 2025年高考政治答題模板:選必修123主觀題答題語言總結(jié)
- 兒童性早熟課件
- 生活垃圾合同終止協(xié)議
- 區(qū)塊鏈在特種設(shè)備數(shù)據(jù)共享交換模型中的研究
- 山東能源電力集團(tuán)招聘筆試題庫2025
- 遼寧省沈陽市沈北新區(qū)2024-2025學(xué)年初三下學(xué)期質(zhì)量調(diào)研考試(一模)語文試題含解析
- 2025年九年級中考數(shù)學(xué)三輪沖刺訓(xùn)練一次函數(shù)中面積相關(guān)問題訓(xùn)練
- 醫(yī)療技術(shù)品牌的創(chuàng)新與傳播策略
- 湖北省武漢市2025屆高中畢業(yè)生四月調(diào)研考試生物試題及答案(武漢四調(diào))
評論
0/150
提交評論