2023-2024學年甘肅省徽縣三中高三第二學期第二次月考試卷數學試題_第1頁
2023-2024學年甘肅省徽縣三中高三第二學期第二次月考試卷數學試題_第2頁
2023-2024學年甘肅省徽縣三中高三第二學期第二次月考試卷數學試題_第3頁
2023-2024學年甘肅省徽縣三中高三第二學期第二次月考試卷數學試題_第4頁
2023-2024學年甘肅省徽縣三中高三第二學期第二次月考試卷數學試題_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年甘肅省徽縣三中高三第二學期第二次月考試卷數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數()的圖象的大致形狀是()A. B. C. D.2.高斯是德國著名的數學家,近代數學奠基者之一,享有“數學王子”的稱號,用其名字命名的“高斯函數”為:設,用表示不超過的最大整數,則稱為高斯函數,例如:,,已知函數(),則函數的值域為()A. B. C. D.3.已知,若則實數的取值范圍是()A. B. C. D.4.如圖,長方體中,,,點T在棱上,若平面.則()A.1 B. C.2 D.5.已知,,是平面內三個單位向量,若,則的最小值()A. B. C. D.56.,則與位置關系是()A.平行 B.異面C.相交 D.平行或異面或相交7.如圖,網格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為()A. B. C. D.8.雙曲線C:(,)的離心率是3,焦點到漸近線的距離為,則雙曲線C的焦距為()A.3 B. C.6 D.9.若兩個非零向量、滿足,且,則與夾角的余弦值為()A. B. C. D.10.已知函數與的圖象有一個橫坐標為的交點,若函數的圖象的縱坐標不變,橫坐標變為原來的倍后,得到的函數在有且僅有5個零點,則的取值范圍是()A. B.C. D.11.《周易》歷來被人們視作儒家群經之首,它表現了古代中華民族對萬事萬物的深刻而又樸素的認識,是中華人文文化的基礎,它反映出中國古代的二進制計數的思想方法.我們用近代術語解釋為:把陽爻“-”當作數字“1”,把陰爻“--”當作數字“0”,則八卦所代表的數表示如下:卦名符號表示的二進制數表示的十進制數坤0000震0011坎0102兌0113依此類推,則六十四卦中的“屯”卦,符號“”表示的十進制數是()A.18 B.17 C.16 D.1512.已知函數,,若成立,則的最小值為()A.0 B.4 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.二項式的展開式中所有項的二項式系數之和是64,則展開式中的常數項為______.14.若橢圓:的一個焦點坐標為,則的長軸長為_______.15.從編號為,,,的張卡片中隨機抽取一張,放回后再隨機抽取一張,則第二次抽得的卡片上的數字能被第一次抽得的卡片上數字整除的概率為_____________.16.從甲、乙、丙、丁、戊五人中任選兩名代表,甲被選中的概率為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,函數,(是自然對數的底數).(Ⅰ)討論函數極值點的個數;(Ⅱ)若,且命題“,”是假命題,求實數的取值范圍.18.(12分)在①;②;③這三個條件中任選一個,補充在下面問題中的橫線上,并解答相應的問題.在中,內角A,B,C的對邊分別為a,b,c,且滿足________________,,求的面積.19.(12分)為了解甲、乙兩個快遞公司的工作狀況,假設同一個公司快遞員的工作狀況基本相同,現從甲、乙兩公司各隨機抽取一名快遞員,并從兩人某月(30天)的快遞件數記錄結果中隨機抽取10天的數據,整理如下:甲公司員工:410,390,330,360,320,400,330,340,370,350乙公司員工:360,420,370,360,420,340,440,370,360,420每名快遞員完成一件貨物投遞可獲得的勞務費情況如下:甲公司規定每件0.65元,乙公司規定每天350件以內(含350件)的部分每件0.6元,超出350件的部分每件0.9元.(1)根據題中數據寫出甲公司員工在這10天投遞的快件個數的平均數和眾數;(2)為了解乙公司員工每天所得勞務費的情況,從這10天中隨機抽取1天,他所得的勞務費記為(單位:元),求的分布列和數學期望;(3)根據題中數據估算兩公司被抽取員工在該月所得的勞務費.20.(12分)已知橢圓的短軸長為,左右焦點分別為,,點是橢圓上位于第一象限的任一點,且當時,.(1)求橢圓的標準方程;(2)若橢圓上點與點關于原點對稱,過點作垂直于軸,垂足為,連接并延長交于另一點,交軸于點.(ⅰ)求面積最大值;(ⅱ)證明:直線與斜率之積為定值.21.(12分)在等比數列中,已知,.設數列的前n項和為,且,(,).(1)求數列的通項公式;(2)證明:數列是等差數列;(3)是否存在等差數列,使得對任意,都有?若存在,求出所有符合題意的等差數列;若不存在,請說明理由.22.(10分)某單位準備購買三臺設備,型號分別為已知這三臺設備均使用同一種易耗品,提供設備的商家規定:可以在購買設備的同時購買該易耗品,每件易耗品的價格為100元,也可以在設備使用過程中,隨時單獨購買易耗品,每件易耗品的價格為200元.為了決策在購買設備時應購買的易耗品的件數.該單位調查了這三種型號的設備各60臺,調査每臺設備在一個月中使用的易耗品的件數,并得到統計表如下所示.每臺設備一個月中使用的易耗品的件數678型號A30300頻數型號B203010型號C04515將調查的每種型號的設備的頻率視為概率,各臺設備在易耗品的使用上相互獨立.(1)求該單位一個月中三臺設備使用的易耗品總數超過21件的概率;(2)以該單位一個月購買易耗品所需總費用的期望值為決策依據,該單位在購買設備時應同時購買20件還是21件易耗品?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

對x分類討論,去掉絕對值,即可作出圖象.【詳解】故選C.【點睛】識圖常用的方法(1)定性分析法:通過對問題進行定性的分析,從而得出圖象的上升(或下降)的趨勢,利用這一特征分析解決問題;(2)定量計算法:通過定量的計算來分析解決問題;(3)函數模型法:由所提供的圖象特征,聯想相關函數模型,利用這一函數模型來分析解決問題.2.B【解析】

利用換元法化簡解析式為二次函數的形式,根據二次函數的性質求得的取值范圍,由此求得的值域.【詳解】因為(),所以,令(),則(),函數的對稱軸方程為,所以,,所以,所以的值域為.故選:B【點睛】本小題考查函數的定義域與值域等基礎知識,考查學生分析問題,解決問題的能力,運算求解能力,轉化與化歸思想,換元思想,分類討論和應用意識.3.C【解析】

根據,得到有解,則,得,,得到,再根據,有,即,可化為,根據,則的解集包含求解,【詳解】因為,所以有解,即有解,所以,得,,所以,又因為,所以,即,可化為,因為,所以的解集包含,所以或,解得,故選:C【點睛】本題主要考查一元二次不等式的解法及集合的關系的應用,還考查了運算求解的能力,屬于中檔題,4.D【解析】

根據線面垂直的性質,可知;結合即可證明,進而求得.由線段關系及平面向量數量積定義即可求得.【詳解】長方體中,,點T在棱上,若平面.則,則,所以,則,所以,故選:D.【點睛】本題考查了直線與平面垂直的性質應用,平面向量數量積的運算,屬于基礎題.5.A【解析】

由于,且為單位向量,所以可令,,再設出單位向量的坐標,再將坐標代入中,利用兩點間的距離的幾何意義可求出結果.【詳解】解:設,,,則,從而,等號可取到.故選:A【點睛】此題考查的是平面向量的坐標、模的運算,利用整體代換,再結合距離公式求解,屬于難題.6.D【解析】結合圖(1),(2),(3)所示的情況,可得a與b的關系分別是平行、異面或相交.選D.7.D【解析】

根據三視圖判斷出幾何體是由一個三棱錐和一個三棱柱構成,利用錐體和柱體的體積公式計算出體積并相加求得幾何體的體積.【詳解】由三視圖可知該幾何體的直觀圖是由一個三棱錐和三棱柱構成,該多面體體積為.故選D.【點睛】本小題主要考查三視圖還原為原圖,考查柱體和錐體的體積公式,屬于基礎題.8.A【解析】

根據焦點到漸近線的距離,可得,然后根據,可得結果.【詳解】由題可知:雙曲線的漸近線方程為取右焦點,一條漸近線則點到的距離為,由所以,則又所以所以焦距為:故選:A【點睛】本題考查雙曲線漸近線方程,以及之間的關系,識記常用的結論:焦點到漸近線的距離為,屬基礎題.9.A【解析】

設平面向量與的夾角為,由已知條件得出,在等式兩邊平方,利用平面向量數量積的運算律可求得的值,即為所求.【詳解】設平面向量與的夾角為,,可得,在等式兩邊平方得,化簡得.故選:A.【點睛】本題考查利用平面向量的模求夾角的余弦值,考查平面向量數量積的運算性質的應用,考查計算能力,屬于中等題.10.A【解析】

根據題意,,求出,所以,根據三角函數圖像平移伸縮,即可求出的取值范圍.【詳解】已知與的圖象有一個橫坐標為的交點,則,,,,,若函數圖象的縱坐標不變,橫坐標變為原來的倍,則,所以當時,,在有且僅有5個零點,,.故選:A.【點睛】本題考查三角函數圖象的性質、三角函數的平移伸縮以及零點個數問題,考查轉化思想和計算能力.11.B【解析】

由題意可知“屯”卦符號“”表示二進制數字010001,將其轉化為十進制數即可.【詳解】由題意類推,可知六十四卦中的“屯”卦符號“”表示二進制數字010001,轉化為十進制數的計算為1×20+1×24=1.故選:B.【點睛】本題主要考查數制是轉化,新定義知識的應用等,意在考查學生的轉化能力和計算求解能力.12.A【解析】

令,進而求得,再轉化為函數的最值問題即可求解.【詳解】∵∴(),∴,令:,,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【點睛】本題主要考查了導數在研究函數最值中的應用,考查了轉化的數學思想,恰當的用一個未知數來表示和是本題的關鍵,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由二項式系數性質求出,由二項展開式通項公式得出常數項的項數,從而得常數項.【詳解】由題意,.展開式通項為,由得,∴常數項為.故答案為:.【點睛】本題考查二項式定理,考查二項式系數的性質,掌握二項展開式通項公式是解題關鍵.14.【解析】

由焦點坐標得從而可求出,繼而得到橢圓的方程,即可求出長軸長.【詳解】解:因為一個焦點坐標為,則,即,解得或由表示的是橢圓,則,所以,則橢圓方程為所以.故答案為:.【點睛】本題考查了橢圓的標準方程,考查了橢圓的幾何意義.本題的易錯點是忽略,從而未對的兩個值進行取舍.15.【解析】

基本事件總數,第二次抽得的卡片上的數字能被第一次抽得的卡片上數字的基本事件有8個,由此能求出概率.【詳解】解:從編號為,,,的張卡片中隨機抽取一張,放回后再隨機抽取一張,基本事件總數,第二次抽得的卡片上的數字能被第一次抽得的卡片上數字的基本事件有8個,分別為:,,,,,,,.所以第二次抽得的卡片上的數字能被第一次抽得的卡片上數字整除的概率為.故答案為.【點睛】本題考查概率的求法,考查古典概型、列舉法等基礎知識,屬于基礎題.16.【解析】

甲被選中,只需從乙、丙、丁、戊中,再選一人即有種方法,從甲、乙、丙、丁、戊五人中任選兩名共有種方法,根據公式即可求得概率.【詳解】甲被選中,只需從乙、丙、丁、戊中,再選一人即有種方法,從甲、乙、丙、丁、戊五人中任選兩名共有種方法,.故答案為:.【點睛】本題考查古典概型的概率的計算,考查學生分析問題的能力,難度容易.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)當時,沒有極值點,當時,有一個極小值點.(2)【解析】試題分析:(1),分,討論,當時,對,,當時,解得,在上是減函數,在上是增函數。所以,當時,沒有極值點,當時,有一個極小值點.(2)原命題為假命題,則逆否命題為真命題。即不等式在區間內有解。設,所以,設,則,且是增函數,所以。所以分和k>1討論。試題解析:(Ⅰ)因為,所以,當時,對,,所以在是減函數,此時函數不存在極值,所以函數沒有極值點;當時,,令,解得,若,則,所以在上是減函數,若,則,所以在上是增函數,當時,取得極小值為,函數有且僅有一個極小值點,所以當時,沒有極值點,當時,有一個極小值點.(Ⅱ)命題“,”是假命題,則“,”是真命題,即不等式在區間內有解.若,則設,所以,設,則,且是增函數,所以當時,,所以在上是增函數,,即,所以在上是增函數,所以,即在上恒成立.當時,因為在是增函數,因為,,所以在上存在唯一零點,當時,,在上單調遞減,從而,即,所以在上單調遞減,所以當時,,即.所以不等式在區間內有解綜上所述,實數的取值范圍為.18.橫線處任填一個都可以,面積為.【解析】

無論選哪一個,都先由正弦定理化邊為角后,由誘導公式,展開后,可求得角,再由余弦定理求得,從而易求得三角形面積.【詳解】在橫線上填寫“”.解:由正弦定理,得.由,得.由,得.所以.又(若,則這與矛盾),所以.又,得.由余弦定理及,得,即.將代入,解得.所以.在橫線上填寫“”.解:由及正弦定理,得.又,所以有.因為,所以.從而有.又,所以由余弦定理及,得即.將代入,解得.所以.在橫線上填寫“”解:由正弦定理,得.由,得,所以由二倍角公式,得.由,得,所以.所以,即.由余弦定理及,得.即.將代入,解得.所以.【點睛】本題考查三角形面積公式,考查正弦定理、余弦定理,兩角和的正弦公式等,正弦定理進行邊角轉換,求三角形面積時,①若三角形中已知一個角(角的大小或該角的正、余弦值),結合題意求解這個角的兩邊或該角的兩邊之積,代入公式求面積;②若已知三角形的三邊,可先求其一個角的余弦值,再求其正弦值,代入公式求面積,總之,結合圖形恰當選擇面積公式是解題的關鍵.19.(1)平均數為360,眾數為330;(2)見詳解;(3)甲公司:7020(元),乙公司:7281(元)【解析】

(1)將圖中甲公司員工A的所有數據相加,再除以總的天數10,即可求出甲公司員工A投遞快遞件數的平均數.從中發現330出現的次數最多,故為眾數;(2)由題意能求出的可能取值為340,360,370,420,440,分別求出相對應的概率,由此能求出的分布列和數學期望;(3)利用(1)(2)的結果,可估算兩公司的每位員工在該月所得的勞務費.【詳解】解:(1)由題意知甲公司員工在這10天投遞的快遞件數的平均數為.眾數為330.(2)設乙公司員工1天的投遞件數為隨機變量,則當時,當時,當時,當時,當時,的分布列為204219228273291(元);(3)由(1)估計甲公司被抽取員工在該月所得的勞務費為(元)由(2)估計乙公司被抽取員工在該月所得的勞務費為(元).【點睛】本題考查頻率分布表的應用,考查概率的求法,考查離散型隨機變量的分布列和數學期望的求法,是中檔題.20.(1);(2)(ⅰ);(ⅱ)證明見解析.【解析】

(1)由,解方程組即可得到答案;(2)(ⅰ)設,,則,,易得,注意到,利用基本不等式得到的最大值即可得到答案;(ⅱ)設直線斜率為,直線方程為,聯立橢圓方程得到的坐標,再利用兩點的斜率公式計算即可.【詳解】(1)設,由,得.將代入,得,即,由,解得,所以橢圓的標準方程為.(2)設,,則,(ⅰ)易知為的中位線,所以,所以,又滿足,所以,得,故,當且僅當,即,時取等號,所以面積最大值為.(ⅱ)記直線斜率為,則直線斜率為,所以直線方程為.由,得,由韋達定理得,所以,代入直線方程,得,于是,直線斜率,所以直線與斜率之積為定值.【點睛】本題考查直線與橢圓的位置關系,涉及到橢圓中的最值及定值問題,在解橢圓與直線的位置關系的答題時,一般會用到根與系數的關系,考查學生的數學運算求解能力,是一道有一定難度的題.21.(1)(2)見解析(3)存在唯一的等差數列,其通項公式為,滿足題設【解析】

(1)由,可得公比,即得;(2)由(1)和可得數列的遞推公式,即可知結果為常數,即得證;(3)由(2)可得數列的通項公式,,設出等差數列,再根據不等關系來算出的首項和公差即可.【詳解】(1)設等比數列的公比為q,因為,,所以,解得.所以數列的通項公式為:.(2)由(1)得,當,時,可得①,②②①得,,則有,即,,.因為,由①得,,所以,所以,.所以數列是以為首項,1為公差的等差數列.(3)由(2)得,所以,.假設存在等差數列,其通項,使得對任意,都有,即對任意,都有.③首先證明滿足③的.若不然,,則,或.(i)若,則當,時,,這與矛盾.(ii)若,則當,時,.而,,所以.故,這與

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論