




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆廣西南寧市第四中學高三適應性監測考試數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知實數,則的大小關系是()A. B. C. D.2.若函數在時取得極值,則()A. B. C. D.3.已知,,,則,,的大小關系為()A. B. C. D.4.我國南北朝時的數學著作《張邱建算經》有一道題為:“今有十等人,每等一人,宮賜金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中間四人未到者,亦依次更給,問各得金幾何?”則在該問題中,等級較高的二等人所得黃金比等級較低的九等人所得黃金()A.多1斤 B.少1斤 C.多斤 D.少斤5.設變量滿足約束條件,則目標函數的最大值是()A.7 B.5 C.3 D.26.設函數,當時,,則()A. B. C.1 D.7.已知函數,若,使得,則實數的取值范圍是()A. B.C. D.8.已知橢圓的右焦點為F,左頂點為A,點P橢圓上,且,若,則橢圓的離心率為()A. B. C. D.9.在中,,,分別為角,,的對邊,若的面為,且,則()A.1 B. C. D.10.在中,角的對邊分別為,,若,,且,則的面積為()A. B. C. D.11.已知是雙曲線的左、右焦點,是的左、右頂點,點在過且斜率為的直線上,為等腰三角形,,則的漸近線方程為()A. B. C. D.12.集合的真子集的個數為()A.7 B.8 C.31 D.32二、填空題:本題共4小題,每小題5分,共20分。13.五聲音階是中國古樂基本音階,故有成語“五音不全”.中國古樂中的五聲音階依次為:宮、商、角、徵、羽,如果把這五個音階全用上,排成一個五個音階的音序,且要求宮、羽兩音階不相鄰且在角音階的同側,可排成______種不同的音序.14.在中,,,,則繞所在直線旋轉一周所形成的幾何體的表面積為______________.15.正四面體的各個點在平面同側,各點到平面的距離分別為1,2,3,4,則正四面體的棱長為__________.16.如圖,的外接圓半徑為,為邊上一點,且,,則的面積為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知直線與拋物線交于兩點.(1)當點的橫坐標之和為4時,求直線的斜率;(2)已知點,直線過點,記直線的斜率分別為,當取最大值時,求直線的方程.18.(12分)隨著改革開放的不斷深入,祖國不斷富強,人民的生活水平逐步提高,為了進一步改善民生,2019年1月1日起我國實施了個人所得稅的新政策,其政策的主要內容包括:(1)個稅起征點為5000元;(2)每月應納稅所得額(含稅)收入個稅起征點專項附加扣除;(3)專項附加扣除包括①贍養老人費用②子女教育費用③繼續教育費用④大病醫療費用等.其中前兩項的扣除標準為:①贍養老人費用:每月扣除2000元②子女教育費用:每個子女每月扣除1000元.新個稅政策的稅率表部分內容如下:級數一級二級三級四級每月應納稅所得額(含稅)不超過3000元的部分超過3000元至12000元的部分超過12000元至25000元的部分超過25000元至35000元的部分稅率3102025(1)現有李某月收入29600元,膝下有一名子女,需要贍養老人,除此之外,無其它專項附加扣除.請問李某月應繳納的個稅金額為多少?(2)為研究月薪為20000元的群體的納稅情況,現收集了某城市500名的公司白領的相關資料,通過整理資料可知,有一個孩子的有400人,沒有孩子的有100人,有一個孩子的人中有300人需要贍養老人,沒有孩子的人中有50人需要贍養老人,并且他們均不符合其它專項附加扣除(受統計的500人中,任何兩人均不在一個家庭).若他們的月收入均為20000元,依據樣本估計總體的思想,試估計在新個稅政策下這類人群繳納個稅金額的分布列與期望.19.(12分)如圖,已知四棱錐,平面,底面為矩形,,為的中點,.(1)求線段的長.(2)若為線段上一點,且,求二面角的余弦值.20.(12分)設函數.(1)當時,求不等式的解集;(2)當時,求實數的取值范圍.21.(12分)記無窮數列的前項中最大值為,最小值為,令,則稱是“極差數列”.(1)若,求的前項和;(2)證明:的“極差數列”仍是;(3)求證:若數列是等差數列,則數列也是等差數列.22.(10分)已知在中,角,,的對邊分別為,,,且.(1)求的值;(2)若,求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據,利用指數函數對數函數的單調性即可得出.【詳解】解:∵,∴,,.∴.故選:B.【點睛】本題考查了指數函數對數函數的單調性,考查了推理能力與計算能力,屬于基礎題.2、D【解析】
對函數求導,根據函數在時取得極值,得到,即可求出結果.【詳解】因為,所以,又函數在時取得極值,所以,解得.故選D【點睛】本題主要考查導數的應用,根據函數的極值求參數的問題,屬于??碱}型.3、D【解析】
構造函數,利用導數求得的單調區間,由此判斷出的大小關系.【詳解】依題意,得,,.令,所以.所以函數在上單調遞增,在上單調遞減.所以,且,即,所以.故選:D.【點睛】本小題主要考查利用導數求函數的單調區間,考查化歸與轉化的數學思想方法,考查對數式比較大小,屬于中檔題.4、C【解析】設這十等人所得黃金的重量從大到小依次組成等差數列則由等差數列的性質得,故選C5、B【解析】
由約束條件作出可行域,化目標函數為直線方程的斜截式,數形結合得到最優解,聯立方程組求得最優解的坐標,把最優解的坐標代入目標函數得結論.【詳解】畫出約束條件,表示的可行域,如圖,由可得,將變形為,平移直線,由圖可知當直經過點時,直線在軸上的截距最大,最大值為,故選B.【點睛】本題主要考查線性規劃中,利用可行域求目標函數的最值,屬于簡單題.求目標函數最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數對應的最優解對應點(在可行域內平移變形后的目標函數,最先通過或最后通過的頂點就是最優解);(3)將最優解坐標代入目標函數求出最值.6、A【解析】
由降冪公式,兩角和的正弦公式化函數為一個角的一個三角函數形式,然后由正弦函數性質求得參數值.【詳解】,時,,,∴,由題意,∴.故選:A.【點睛】本題考查二倍角公式,考查兩角和的正弦公式,考查正弦函數性質,掌握正弦函數性質是解題關鍵.7、C【解析】試題分析:由題意知,當時,由,當且僅當時,即等號是成立,所以函數的最小值為,當時,為單調遞增函數,所以,又因為,使得,即在的最小值不小于在上的最小值,即,解得,故選C.考點:函數的綜合問題.【方法點晴】本題主要考查了函數的綜合問題,其中解答中涉及到基本不等式求最值、函數的單調性及其應用、全稱命題與存在命題的應用等知識點的綜合考查,試題思維量大,屬于中檔試題,著重考查了學生分析問題和解答問題的能力,以及轉化與化歸思想的應用,其中解答中轉化為在的最小值不小于在上的最小值是解答的關鍵.8、C【解析】
不妨設在第一象限,故,根據得到,解得答案.【詳解】不妨設在第一象限,故,,即,即,解得,(舍去).故選:.【點睛】本題考查了橢圓的離心率,意在考查學生的計算能力.9、D【解析】
根據三角形的面積公式以及余弦定理進行化簡求出的值,然后利用兩角和差的正弦公式進行求解即可.【詳解】解:由,得,∵,∴,即即,則,∵,∴,∴,即,則,故選D.【點睛】本題主要考查解三角形的應用,結合三角形的面積公式以及余弦定理求出的值以及利用兩角和差的正弦公式進行計算是解決本題的關鍵.10、C【解析】
由,可得,化簡利用余弦定理可得,解得.即可得出三角形面積.【詳解】解:,,且,,化為:.,解得..故選:.【點睛】本題考查了向量共線定理、余弦定理、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題.11、D【解析】
根據為等腰三角形,可求出點P的坐標,又由的斜率為可得出關系,即可求出漸近線斜率得解.【詳解】如圖,因為為等腰三角形,,所以,,,又,,解得,所以雙曲線的漸近線方程為,故選:D【點睛】本題主要考查了雙曲線的簡單幾何性質,屬于中檔題.12、A【解析】
計算,再計算真子集個數得到答案.【詳解】,故真子集個數為:.故選:.【點睛】本題考查了集合的真子集個數,意在考查學生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
按照“角”的位置分類,分“角”在兩端,在中間,以及在第二個或第四個位置上,即可求出.【詳解】①若“角”在兩端,則宮、羽兩音階一定在角音階同側,此時有種;②若“角”在中間,則不可能出現宮、羽兩音階不相鄰且在角音階的同側;③若“角”在第二個或第四個位置上,則有種;綜上,共有種.故答案為:1.【點睛】本題主要考查利用排列知識解決實際問題,涉及分步計數乘法原理和分類計數加法原理的應用,意在考查學生分類討論思想的應用和綜合運用知識的能力,屬于基礎題.14、【解析】
由題知該旋轉體為兩個倒立的圓錐底對底組合在一起,根據圓錐側面積計算公式可得.【詳解】解:由題知該旋轉體為兩個倒立的圓錐底對底組合在一起,在中,,,,如下圖所示,底面圓的半徑為,則所形成的幾何體的表面積為.故答案為:.【點睛】本題考查旋轉體的表面積計算問題,屬于基礎題.15、【解析】
不妨設點A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點D,與AB,AC分別相交于點E,F,根據題意F為中點,E為AB的三等分點(靠近點A),設棱長為a,求得,再用余弦定理求得:,從而求得,再根據頂點A到面EDF的距離為,得到,然后利用等體積法求解,【詳解】不妨設點A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點D,與AB,AC分別相交于點E,F,如圖所示:由題意得:F為中點,E為AB的三等分點(靠近點A),設棱長為a,,頂點D到面ABC的距離為所以,由余弦定理得:,所以,所以,又頂點A到面EDF的距離為,所以,因為,所以,解得,故答案為:【點睛】本題主要考查幾何體的切割問題以及等體積法的應用,還考查了轉化化歸的思想和空間想象,運算求解的能力,屬于難題,16、【解析】
先由正弦定理得到,再在三角形ABD、ADC中分別由正弦定理進一步得到B=C,最后利用面積公式計算即可.【詳解】依題意可得,由正弦定理得,即,由圖可知是鈍角,所以,,在三角形ABD中,,,在三角形ADC中,由正弦定理得即,所以,,故,,,故的面積為.故答案為:.【點睛】本題考查正弦定理解三角形,考查學生的基本計算能力,要靈活運用正弦定理公式及三角形面積公式,本題屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)設,根據直線的斜率公式即可求解;(2)設直線的方程為,聯立直線與拋物線方程,由韋達定理得,,結合直線的斜率公式得到,換元后討論的符號,求最值可求解.【詳解】(1)設,因為,即直線的斜率為1.(2)顯然直線的斜率存在,設直線的方程為.聯立方程組,可得則,令,則則當時,;當且僅當,即時,解得時,取“=”號,當時,;當時,綜上所述,當時,取得最大值,此時直線的方程是.【點睛】本題主要考查了直線的斜率公式,直線與拋物線的位置關系,換元法,均值不等式,考查了運算能力,屬于難題.18、(1)李某月應繳納的個稅金額為元,(2)分布列詳見解析,期望為1150元【解析】
(1)分段計算個人所得稅額;
(2)隨機變量X的所有可能的取值為990,1190,1390,1590,分別求出各值對應的概率,列出分布列,求期望即可.【詳解】解:(1)李某月應納稅所得額(含稅)為:29600?5000?1000?2000=21600元
不超過3000的部分稅額為3000×3%=90元
超過3000元至12000元的部分稅額為9000×10%=900元,
超過12000元至25000元的部分稅額為9600×20%=1920元
所以李某月應繳納的個稅金額為90+900+1920=2910元,
(2)有一個孩子需要贍養老人應納稅所得額(含稅)為:20000?5000?1000?2000=12000元,
月應繳納的個稅金額為:90+900=990元
有一個孩子不需要贍養老人應納稅所得額(含稅)為:20000?5000?1000=14000元,
月應繳納的個稅金額為:90+900+400=1390元;
沒有孩子需要贍養老人應納稅所得額(含稅)為:20000?5000?2000=13000元,
月應繳納的個稅金額為:90+900+200=1190元;
沒有孩子不需要贍養老人應納稅所得額(含稅)為:20000?5000=15000元,
月應繳納的個稅金額為:90+900+600=1590元;
.
所以隨機變量X的分布列為:990119013901590.【點睛】本題考查了分段函數的應用與函數值計算,考查了隨機變量的概率分布列與數學期望,屬于中檔題.19、(1)的長為4(2)【解析】
(1)分別以所在直線為軸,建立如圖所示的空間直角坐標系,設,根據向量垂直關系計算得到答案.(2)計算平面的法向量為,為平面的一個法向量,再計算向量夾角得到答案.【詳解】(1)分別以所在直線為軸,建立如圖所示的空間直角坐標系.設,則,所以.,因為,所以,即,解得,所以的長為4.(2)因為,所以,又,故.設為平面的法向量,則即取,解得,所以為平面的一個法向量.顯然,為平面的一個法向量,則,據圖可知,二面角的余弦值為.【點睛】本題考查了立體幾何中的線段長度,二面角,意在考查學生的計算能力和空間想象能力.20、(1)(2)當時,的取值范圍為;當時,的取值范圍為.【解析】
(1)當時,分類討論把不等式化為等價不等式組,即可求解.(2)由絕對值的三角不等式,可得,當且僅當時,取“”,分類討論,即可求解.【詳解】(1)當時,,不等式可化為或或,解得不等式的解集為.(2)由絕對值的三角不等式,可得,當且僅當時,取“”,所以當時,的取值范圍為;當時,的取值范圍為.【點睛】本題主要考查了含絕對值的不等式的求解,以及絕對值三角不等式的應用,其中解答中熟記含絕對值不等式的解法,以及合理應用絕對值的三角不等式是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.21、(1)(2)證明見解析(3)證明見解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 呼倫貝爾學院《英語教學名家教學賞析》2023-2024學年第二學期期末試卷
- 2017小學生消防課件
- 一流課程匯報答辯
- 泰山護理職業學院《基礎俄語Ⅲ》2023-2024學年第一學期期末試卷
- 甘肅省2025屆數學三下期末調研試題含解析
- 星海音樂學院《小動物臨床用藥專題》2023-2024學年第二學期期末試卷
- 浙江省寧波市北侖區部分校2024-2025學年小升初數學檢測卷含解析
- 石家莊學院《建筑審美與評論》2023-2024學年第二學期期末試卷
- 梅州市蕉嶺縣2025年數學四下期末綜合測試試題含解析
- 西安電子科技大學長安學院《藥物合成原理》2023-2024學年第二學期期末試卷
- 生態修復成本分析-全面剖析
- 健康醫療大數據分析合同
- 《SLT 377-2025水利水電工程錨噴支護技術規范》知識培訓
- 山東2025年山東司法警官職業學院招聘38人筆試歷年參考題庫附帶答案詳解
- 高血脂高血壓護理
- 2024-2025學年人教版(2024)七年級數學下冊第八章實數單元檢測(含答案)
- 膀胱癌部分切除護理查房
- 少喝飲料安全教育
- 兒童心理健康與家庭教育關系
- 2025屆山東省臨沂市高三下學期一??荚囉⒄Z試卷(含解析)
- 2025年河南水利與環境職業學院單招職業傾向性測試題庫學生專用
評論
0/150
提交評論