2025屆黃岡中學數學高二上期末檢測試題含解析_第1頁
2025屆黃岡中學數學高二上期末檢測試題含解析_第2頁
2025屆黃岡中學數學高二上期末檢測試題含解析_第3頁
2025屆黃岡中學數學高二上期末檢測試題含解析_第4頁
2025屆黃岡中學數學高二上期末檢測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆黃岡中學數學高二上期末檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.點到直線的距離為2,則的值為()A.0 B.C.0或 D.0或2.設是等差數列的前n項和,若,,則()A.26 B.-7C.-10 D.-133.已知等差數列,且,則()A.3 B.5C.7 D.94.下列命題中正確的是()A.拋物線的焦點坐標為B.拋物線的準線方程為x=?1C.拋物線的圖象關于x軸對稱D.拋物線的圖象關于y軸對稱5.已知向量,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件6.雙曲線的左、右焦點分別為、,過點且斜率為的直線與雙曲線的左右兩支分別交于P、Q兩點,若,則雙曲線C的離心率為()A. B.C. D.7.已知雙曲線的實軸長為10,則該雙曲線的漸近線的斜率為()A. B.C. D.8.如圖甲是第七屆國際數學家大會(簡稱ICME—7)的會徽圖案,其主體圖案是由圖乙的一連串直角三角形演化而成的.已知,,,,為直角頂點,設這些直角三角形的周長從小到大組成的數列為,令,為數列的前項和,則()A.8 B.9C.10 D.119.已知,,則的最小值為()A. B.C. D.10.在區間上隨機取一個數,則事件“曲線表示圓”的概率為()A. B.C. D.11.已知直線方程為,則其傾斜角為()A.30° B.60°C.120° D.150°12.若拋物線的焦點與橢圓的右焦點重合,則的值為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平行六面體中,點P是AC與BD的交點,若,且,則___________.14.若滿足約束條件,則的最小值為________.15.已知等差數列的前n項和為,,則___________.16.橢圓的弦被點平分,則這條弦所在的直線方程是________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列的前n項和(1)證明是等比數列,并求的通項公式;(2)在和之間插入n個數,使這個數組成一個公差為的等差數列,求數列的前n項和18.(12分)已知橢圓C:的上頂點與橢圓的左右頂點連線的斜率之積為-.(1)求橢圓C的離心率(2)點M(,)在橢圓C上,橢圓的左頂點為D,上頂點為B,點A的坐標為(1,0),過點D的直線L與橢圓在第一象限交于點P,與直線AB交于點Q設L的斜率為k,若,求k的值.19.(12分)已知數列的前項和為,且(1)求數列的通項公式;(2)若,求數列的前項和.20.(12分)如圖,在三棱錐中,,,為的中點.(1)求證:平面;(2)若點在棱上,且,求點到平面的距離.21.(12分)如圖,四棱錐中,,,,平面,點F在線段上運動.(1)若平面,請確定點F的位置并說明理由;(2)若點F滿足,求平面與平面的夾角的余弦值.22.(10分)如圖,在四棱錐中,四邊形ABCD為正方形,PA⊥底面ABCD,,M,N分別為AB和PC的中點(1)求證:MN//平面PAD;(2)求平面MND與平面PAD的夾角的余弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據點到直線的距離公式即可得出答案.【詳解】解:點到直線的距離為,解得或.故選:C.2、C【解析】直接利用等差數列通項和求和公式計算得到答案.【詳解】,,解得,故.故選:C.3、B【解析】根據等差數列的性質求得正確答案.【詳解】由于數列是等差數列,所以.故選:B4、C【解析】根據拋物線的性質逐項分析可得答案.【詳解】拋物線的焦點坐標為,故A錯誤;拋物線的準線方程為,故B錯誤;拋物線的圖象關于x軸對稱,故C正確,D錯誤;故選:C.5、A【解析】根據平面向量垂直的性質,結合平面向量數量積的坐標表示公式、充分性、必要性的定義進行求解判斷即可.詳解】當時,有,顯然由,但是由不一定能推出,故選:A6、C【解析】由,且,可得,再結合,可得,進而在△中,由余弦定理可得到齊次方程,求出即可.【詳解】由題意,可得,因為,所以,又,所以,在△中,,即,由余弦定理,可得,整理得,則,即,解得,因為,所以.故選:C.【點睛】方法點睛:本題考查求雙曲線的離心率,屬于中檔題.雙曲線離心率的求法:(1)由條件直接求出(或或),或者尋找(或或)所滿足的關系,利用求解;(2)根據條件列出的齊次方程,利用轉化為關于的方程,解方程即可,注意根據對所得解進行取舍.7、B【解析】利用雙曲線的實軸長為,求出,即可求出該雙曲線的漸近線的斜率.【詳解】由題意,,所以,,所以雙曲線的漸近線的斜率為.故選:B.【點睛】本題考查雙曲線的方程與性質,考查學生的計算能力,屬于基礎題.8、B【解析】由題意可得的邊長,進而可得周長及,進而可得,可得解.【詳解】由,可得,,,,所以,,所以前項和,所以,故選:B.9、B【解析】將代數式展開,然后利用基本不等式可求出該代數式的最小值.【詳解】,,由基本不等式得,當且僅當時,等號成立.因此,的最小值為.故選B.【點睛】本題考查利用基本不等式求最值,在利用基本不等式時要注意“一正、二定、三相等”條件的成立,考查計算能力,屬于中等題.10、D【解析】先求出曲線表示圓參數的范圍,再由幾何概率可得答案.【詳解】由可得曲線表示圓,則解得或又所以曲線表示圓的概率為故選:D11、D【解析】由直線方程可得斜率,根據斜率與傾斜角的關系即可求傾斜角大小.【詳解】由題設,直線斜率,若直線的傾斜角為,則,∵,∴.故選:D12、D【解析】解:橢圓的右焦點為(2,0),所以拋物線的焦點為(2,0),則,故選D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由向量的運算法則,求得,根據,結合向量的數量積的運算,即可求解.【詳解】由題意可得,,則,故.故答案為:14、5【解析】作出可行域,作直線,平移該直線可得最優解【詳解】作出可行域,如圖內部(含邊界),作直線,直線中是直線的縱截距,代入得,即平移直線,當直線過點時取得最小值5故答案為:515、36【解析】根據等比數列下標和性質得到,再根據等差數列前項和公式計算可得;【詳解】解:因,所以,所以;故答案為:16、2x+4y-3=0【解析】設弦端點為,又A,B在橢圓上,、即直線AB的斜率為直線AB的方程為,.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,(2)【解析】(1)利用及已知即可得到證明,從而求得通項公式;(2)先求出通項,再利用錯位相減法求和即可.【小問1詳解】因,當時,,所以,當時,,又,解得,所以是以2為首項,2為公比的等比數列,故【小問2詳解】因為,所以,,,,所以,所以18、(1)(2)1【解析】(1)根據橢圓的上頂點與橢圓的左右頂點連線的斜率之積為-,由求解;(2)根據點M(,)在橢圓C上,頂點,再由,求得橢圓方程,由,結合,得到,設直線方程為,與橢圓方程聯立,求得點P的坐標,再由,求得Q的坐標,代入求解.【小問1詳解】解:設橢圓C:的上頂點為,左頂點為,右頂點為,因為橢圓的上頂點與橢圓的左右頂點連線的斜率之積為-,所以,即,又所以,解得;【小問2詳解】因為點M(,)在橢圓C上,所以,又,解得,所以橢圓方程為,,則,因為,所以,又,所以,則,設,則,當時,則,不合題意;當時,設直線方程為,與題意方程聯立,消去y得:則,所以,則,因為,由,得,因為,所以,化簡得,因,則.19、(1)(2)【解析】(1)根據,再結合等比數列的定義,即可求出結果;(2)由(1)可知,再利用錯位相減法,即可求出結果.【小問1詳解】解:因為,當時,,解得當時,,所以,即.所以數列是首項為2,公比為2的等比數列.故.【小問2詳解】解:由(1)知,則,所以①②,①-②得.所以數列的前項和20、(1)證明見解析;(2)【解析】(1)易得,再由勾股定理逆定理證明,即可得線面垂直;(2)根據(1)得,進而根據幾何關系,利用等體積法求解即可.【詳解】解:(1)連接,∵,是中點,∴,,又,,∴,∴,∵,∴,∴,,平面,∴平面;(2)∵點在棱上,且,,為的中點.∴,∴由余弦定理得,即,∴,由(1)平面,設點到平面的距離為∴,即,解得:所以點到平面的距離為.21、(1)F為BD的中點,證明見解析;(2).【解析】(1)由為的中點,取的中點,連接易證四邊形為平行四邊形,得到,再利用線面平行的判定定理證明;(2)根據題意可得平面ABC與平面AFC的夾角為二面角,取的中點H為坐標原點,建立空間直角坐標系,分別求得平面的一個法向量,平面的一個法向量,設二面角為,由求解.【小問1詳解】為的中點.如圖:取的中點,連接∵,分別為,的中點,∴且∵且∴平行且等于∴四邊形為平行四邊形,則∵平面ABC,平面ABC∴平面ABC【小問2詳解】由題意知,平面ABC與平面AFC的夾角為二面角,取的中點H為坐標原點,建立如圖所示的空間直角坐標系.因為三角形為等腰三角形,易求,則,,所以,,設平面的一個法向量為,則,即,解得設平面的一個法向量為,則,即,解得設二面角為,則,因為二面角為銳角,所以余弦值為.22、(1)證明見解析;(2).【解析】(1)在平面中構造與平行的直線,利用線線平行推證線面平行即可;(2)以為坐標原點建立空間直角坐標系,分別求得兩個平面的法向量,利用向量法即可求得兩個平面夾角的余弦值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論