




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆廣東省東莞市北京師范大學石竹附屬學校高三模擬版數學試題(10-6)注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列函數中,既是奇函數,又在上是增函數的是().A. B.C. D.2.一個空間幾何體的正視圖是長為4,寬為的長方形,側視圖是邊長為2的等邊三角形,俯視圖如圖所示,則該幾何體的體積為()A. B. C. D.3.已知集合,則的值域為()A. B. C. D.4.已知是球的球面上兩點,,為該球面上的動點.若三棱錐體積的最大值為36,則球的表面積為()A. B. C. D.5.在平面直角坐標系中,已知點,,若動點滿足,則的取值范圍是()A. B.C. D.6.已知復數,其中,,是虛數單位,則()A. B. C. D.7.在各項均為正數的等比數列中,若,則()A. B.6 C.4 D.58.已知等差數列的前n項和為,且,則()A.4 B.8 C.16 D.29.若,則實數的大小關系為()A. B. C. D.10.已知底面為邊長為的正方形,側棱長為的直四棱柱中,是上底面上的動點.給出以下四個結論中,正確的個數是()①與點距離為的點形成一條曲線,則該曲線的長度是;②若面,則與面所成角的正切值取值范圍是;③若,則在該四棱柱六個面上的正投影長度之和的最大值為.A. B. C. D.11.a為正實數,i為虛數單位,,則a=()A.2 B. C. D.112.設,,,則的大小關系是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某市高三理科學生有名,在一次調研測試中,數學成績服從正態分布,已知,若按成績分層抽樣的方式取份試卷進行分析,則應從分以上的試卷中抽取的份數為__________.14.古代“五行”學認為:“物質分金、木、土、水、火五種屬性,金克木,木克土,土克水,水克火,火克金.”將五種不同屬性的物質任意排成一列,但排列中屬性相克的兩種物質不相鄰,則這樣的排列方法有_________種.(用數字作答)15.雙曲線的左右頂點為,以為直徑作圓,為雙曲線右支上不同于頂點的任一點,連接交圓于點,設直線的斜率分別為,若,則_____.16.設數列為等差數列,其前項和為,已知,,若對任意都有成立,則的值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列是公比為正數的等比數列,其前項和為,滿足,且成等差數列.(1)求的通項公式;(2)若數列滿足,求的值.18.(12分)已知傾斜角為的直線經過拋物線的焦點,與拋物線相交于、兩點,且.(1)求拋物線的方程;(2)設為拋物線上任意一點(異于頂點),過做傾斜角互補的兩條直線、,交拋物線于另兩點、,記拋物線在點的切線的傾斜角為,直線的傾斜角為,求證:與互補.19.(12分)市民小張計劃貸款60萬元用于購買一套商品住房,銀行給小張提供了兩種貸款方式.①等額本金:每月的還款額呈遞減趨勢,且從第二個還款月開始,每月還款額與上月還款額的差均相同;②等額本息:每個月的還款額均相同.銀行規定,在貸款到賬日的次月當天開始首次還款(若2019年7月7日貸款到賬,則2019年8月7日首次還款).已知小張該筆貸款年限為20年,月利率為0.004.(1)若小張采取等額本金的還款方式,現已得知第一個還款月應還4900元,最后一個還款月應還2510元,試計算小張該筆貸款的總利息;(2)若小張采取等額本息的還款方式,銀行規定,每月還款額不得超過家庭平均月收入的一半,已知小張家庭平均月收入為1萬元,判斷小張該筆貸款是否能夠獲批(不考慮其他因素);(3)對比兩種還款方式,從經濟利益的角度來考慮,小張應選擇哪種還款方式.參考數據:.20.(12分)在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足bcosA﹣asinB=1.(1)求A;(2)已知a=2,B=,求△ABC的面積.21.(12分)已知函數.(1)若是函數的極值點,求的單調區間;(2)當時,證明:22.(10分)設(1)當時,求不等式的解集;(2)若,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
奇函數滿足定義域關于原點對稱且,在上即可.【詳解】A:因為定義域為,所以不可能時奇函數,錯誤;B:定義域關于原點對稱,且滿足奇函數,又,所以在上,正確;C:定義域關于原點對稱,且滿足奇函數,,在上,因為,所以在上不是增函數,錯誤;D:定義域關于原點對稱,且,滿足奇函數,在上很明顯存在變號零點,所以在上不是增函數,錯誤;故選:B【點睛】此題考查判斷函數奇偶性和單調性,注意奇偶性的前提定義域關于原點對稱,屬于簡單題目.2、B【解析】
由三視圖確定原幾何體是正三棱柱,由此可求得體積.【詳解】由題意原幾何體是正三棱柱,.故選:B.【點睛】本題考查三視圖,考查棱柱的體積.解題關鍵是由三視圖不愿出原幾何體.3、A【解析】
先求出集合,化簡=,令,得由二次函數的性質即可得值域.【詳解】由,得,,令,,,所以得,在上遞增,在上遞減,,所以,即的值域為故選A【點睛】本題考查了二次不等式的解法、二次函數最值的求法,換元法要注意新變量的范圍,屬于中檔題4、C【解析】
如圖所示,當點C位于垂直于面的直徑端點時,三棱錐的體積最大,設球的半徑為,此時,故,則球的表面積為,故選C.考點:外接球表面積和椎體的體積.5、D【解析】
設出的坐標為,依據題目條件,求出點的軌跡方程,寫出點的參數方程,則,根據余弦函數自身的范圍,可求得結果.【詳解】設,則∵,∴∴∴為點的軌跡方程∴點的參數方程為(為參數)則由向量的坐標表達式有:又∵∴故選:D【點睛】考查學生依據條件求解各種軌跡方程的能力,熟練掌握代數式轉換,能夠利用三角換元的思想處理軌跡中的向量乘積,屬于中檔題.求解軌跡方程的方法有:①直接法;②定義法;③相關點法;④參數法;⑤待定系數法6、D【解析】試題分析:由,得,則,故選D.考點:1、復數的運算;2、復數的模.7、D【解析】
由對數運算法則和等比數列的性質計算.【詳解】由題意.故選:D.【點睛】本題考查等比數列的性質,考查對數的運算法則.掌握等比數列的性質是解題關鍵.8、A【解析】
利用等差的求和公式和等差數列的性質即可求得.【詳解】.故選:.【點睛】本題考查等差數列的求和公式和等差數列的性質,考查基本量的計算,難度容易.9、A【解析】
將化成以為底的對數,即可判斷的大小關系;由對數函數、指數函數的性質,可判斷出與1的大小關系,從而可判斷三者的大小關系.【詳解】依題意,由對數函數的性質可得.又因為,故.故選:A.【點睛】本題考查了指數函數的性質,考查了對數函數的性質,考查了對數的運算性質.兩個對數型的數字比較大小時,底數相同,則構造對數函數,結合對數的單調性可判斷大小;若真數相同,則結合對數函數的圖像或者換底公式可判斷大小;若真數和底數都不相同,則可與中間值如1,0比較大小.10、C【解析】
①與點距離為的點形成以為圓心,半徑為的圓弧,利用弧長公式,可得結論;②當在(或時,與面所成角(或的正切值為最小,當在時,與面所成角的正切值為最大,可得正切值取值范圍是;③設,,,則,即,可得在前后、左右、上下面上的正投影長,即可求出六個面上的正投影長度之和.【詳解】如圖:①錯誤,因為,與點距離為的點形成以為圓心,半徑為的圓弧,長度為;②正確,因為面面,所以點必須在面對角線上運動,當在(或)時,與面所成角(或)的正切值為最小(為下底面面對角線的交點),當在時,與面所成角的正切值為最大,所以正切值取值范圍是;③正確,設,則,即,在前后、左右、上下面上的正投影長分別為,,,所以六個面上的正投影長度之,當且僅當在時取等號.故選:.【點睛】本題以命題的真假判斷為載體,考查了軌跡問題、線面角、正投影等知識點,綜合性強,屬于難題.11、B【解析】
,選B.12、A【解析】
選取中間值和,利用對數函數,和指數函數的單調性即可求解.【詳解】因為對數函數在上單調遞增,所以,因為對數函數在上單調遞減,所以,因為指數函數在上單調遞增,所以,綜上可知,.故選:A【點睛】本題考查利用對數函數和指數函數的單調性比較大小;考查邏輯思維能力和知識的綜合運用能力;選取合適的中間值是求解本題的關鍵;屬于中檔題、常考題型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意結合正態分布曲線可得分以上的概率,乘以可得.【詳解】解:,所以應從分以上的試卷中抽取份.故答案為:.【點睛】本題考查正態分布曲線,屬于基礎題.14、1.【解析】試題分析:由題意,可看作五個位置排列五種事物,第一位置有五種排列方法,不妨假設排上的是金,則第二步只能從土與水兩者中選一種排放,故有兩種選擇不妨假設排上的是水,第三步只能排上木,第四步只能排上火,第五步只能排上土,故總的排列方法種數有5×2×1×1×1=1.考點:排列、組合及簡單計數問題.點評:本題考查排列排列組合及簡單計數問題,解答本題關鍵是理解題設中的限制條件及“五行”學說的背景,利用分步原理正確計數,本題較抽象,計數時要考慮周詳.15、【解析】
根據雙曲線上的點的坐標關系得,交圓于點,所以,建立等式,兩式作商即可得解.【詳解】設,交圓于點,所以易知:即.故答案為:【點睛】此題考查根據雙曲線上的點的坐標關系求解斜率關系,涉及雙曲線中的部分定值結論,若能熟記常見二級結論,此題可以簡化計算.16、【解析】
由已知條件得出關于首項和公差的方程組,解出這兩個量,計算出,利用二次函數的基本性質求出的最大值及其對應的值,即可得解.【詳解】設等差數列的公差為,由,解得,.所以,當時,取得最大值,對任意都有成立,則為數列的最大值,因此,.故答案為:.【點睛】本題考查等差數列前項和最值的計算,一般利用二次函數的基本性質求解,考查計算能力,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)由公比表示出,由成等差數列可求得,從而數列的通項公式;(2)求(1)得,然后對和式兩兩并項后利用等差數列的前項和公式可求解.【詳解】(1)∵是等比數列,且成等差數列∴,即∴,解得:或∵,∴∵∴(2)∵∴【點睛】本題考查等比數列的通項公式,考查并項求和法及等差數列的項和公式.本題求數列通項公式所用方法為基本量法,求和是用并項求和法.數列的求和除公式法外,還有錯位相關法、裂項相消法、分組(并項)求和法等等.18、(1)(2)證明見解析【解析】
(1)根據題意,設直線方程為,聯立方程,根據拋物線的定義即可得到結論;(2)根據題意,設的方程為,聯立方程得,同理可得,進而得到,再利用點差法得直線的斜率,利用切線與導數的關系得直線的斜率,進而可得與互補.【詳解】(1)由題意設直線的方程為,令、,聯立,得,根據拋物線的定義得,又,故所求拋物線方程為.(2)依題意,設,,設的方程為,與聯立消去得,,同理,直線的斜率=切線的斜率,由,即與互補.【點睛】本題考查直線與拋物線的位置關系的綜合應用,直線斜率的應用,考查分析問題解決問題的能力,屬于中檔題.19、(1)289200元;(2)能夠獲批;(3)應選擇等額本金還款方式【解析】
(1)由題意可知,等額本金還款方式中,每月的還款額構成一個等差數列,即可由等差數列的前n項和公式求得其還款總額,減去本金即為還款的利息;(2)根據題意,采取等額本息的還款方式,每月還款額為一等比數列,設小張每月還款額為元,由等比數列求和公式及參考數據,即可求得其還款額,與收入的一半比較即可判斷;(3)計算出等額本息還款方式時所付出的總利息,兩個利息比較即可判斷.【詳解】(1)由題意可知,等額本金還款方式中,每月的還款額構成一個等差數列,記為,表示數列的前項和,則,,則,故小張該筆貸款的總利息為元.(2)設小張每月還款額為元,采取等額本息的還款方式,每月還款額為一等比數列,則,所以,即,因為,所以小張該筆貸款能夠獲批.(3)小張采取等額本息貸款方式的總利息為:,因為,所以從經濟利益的角度來考慮,小張應選擇等額本金還款方式.【點睛】本題考查了等差數列與等比數列求和公式的綜合應用,數列在實際問題中的應用,理解題意是解決問題的關鍵,屬于中檔題.20、(1);(2).【解析】
(1)由正弦定理化簡已知等式可得sinBcosA﹣sinAsinB=1,結合sinB>1,可求tanA=,結合范圍A∈(1,π),可得A的值;(2)由已知可求C=,可求b的值,根據三角形的面積公式即可計算得解.【詳解】(1)∵bcosA﹣asinB=1.∴由正弦定理可得:sinBcosA﹣sinAsinB=1,∵sinB>1,∴cosA=sinA,∴tanA=,∵A∈(1,π),∴A=;(2)∵a=2,B=,A=,∴C=,根據正弦定理得到∴b=6,∴S△ABC=ab==6.【點睛】本題主要考查了正弦定理,三角形的面積公式在解三角形中的綜合應用,考查了計算能力和轉化思想,屬于
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農村畜牧業生產與疫情防控責任合同
- 固定支架租賃合同
- 石油化工行業生產安全規范指南
- 藥物治療基礎復習測試卷含答案
- 新能源汽車租憑合同協議書
- 3 《自己之歌》公開課一等獎創新教案統編版高中語文選擇性必修中冊
- 《世界經濟的全球化》戰后世界格局的演變課件-3
- 上海店鋪合租合同范本
- 辦公集裝購買合同范本
- 房車大白轉讓合同范本
- (一模)2025年廣州市普通高中畢業班綜合測試(一)英語試卷(含答案詳解)
- 2025年河南資本集團招聘筆試參考題庫含答案解析
- 《十萬個為什么》整本書閱讀-課件-四年級下冊語文(統編版)
- 走近湖湘紅色人物智慧樹知到答案2024年湖南工商大學
- 【崗位管理】保利地產集團職位說明書
- PRS-761-313技術使用說明書
- 燃氣工程專業中級職稱理論考試題庫-建設工程專業中級職稱理論考試題庫
- 鐵路建設項目施工企業信用評價辦法(鐵總建設〔2018〕124號)
- 鴿巢問題(例1、例2)[1]
- 完整版佛教葬禮儀式
- 【課件】第六章 模型或原型的制作課件-高中通用技術蘇教版(2019)必修《技術與設計1》
評論
0/150
提交評論