




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
ITUPublicationsInternationalTelecommunicationUnion
TelecommunicationStandardizationSector
CrowdsourcingAIand
MachineLearningsolutionsforSDGs
ITUAI/MLChallenges2024Report
ITU
Disclaimer
ThedesignationsemployedandthepresentationofthematerialinthispublicationdonotimplytheexpressionofanyopinionwhatsoeveronthepartofITUconcerningthelegalstatusofanycountry,territory,cityorareaorofitsauthorities,orconcerningthedelimitationofitsfrontiersorboundaries.
ThementionofspecificcompaniesorcertainmanufacturerproductsdoesnotimplythattheyareendorsedorrecommendedbyITUinpreferencetoothersofasimilarnaturethatarenotmentioned.Errorsandomissionsexcepted,thenamesofproprietaryproductsaredistinguishedbyinitialcapitalletters.
AllreasonableprecautionshavebeentakenbyITUtoverifytheinformationcontainedinthispublication.However,thepublishedmaterialisbeingdistributedwithoutwarrantyofanykind,eitherexpressedorimplied.Theresponsibilityfortheinterpretationanduseofthemateriallieswiththereader.
Theopinions,findingsandconclusionsexpressedinthispublicationdonotnecessarilyreflecttheviewsofITUoritsmembership.
ISBN
978-92-61-39451-6(Electronicversion)978-92-61-39461-5(EPUBversion)
978-92-61-39471-4(Mobiversion)
Pleaseconsidertheenvironmentbeforeprintingthisreport.
?ITU2024
Somerightsreserved.ThisworkislicensedtothepublicthroughaCreativeCommonsAttribution-Non-Commercial-ShareAlike3.0IGOlicense(CCBY-NC-SA3.0IGO).
Underthetermsofthislicence,youmaycopy,redistributeandadapttheworkfornon-commercialpurposes,providedtheworkisappropriatelycited.Inanyuseofthiswork,thereshouldbenosuggestionthatITUendorseanyspecificorganization,productsorservices.TheunauthorizeduseoftheITUnamesorlogosisnotpermitted.Ifyouadaptthework,thenyoumustlicenseyourworkunderthesameorequivalentCreativeCommonslicence.Ifyoucreateatranslationofthiswork,youshouldaddthefollowingdisclaimeralongwiththesuggestedcitation:“ThistranslationwasnotcreatedbytheInternationalTelecommunicationUnion(ITU).ITUisnotresponsibleforthecontentoraccuracyofthistranslation.TheoriginalEnglisheditionshallbethebindingandauthenticedition”.Formoreinformation,pleasevisit
/
licenses/by-nc-sa/3.0/igo/
CrowdsourcingAIandMachineLearningsolutionsforSDGs
ITUAI/MLChallenges2024Report
ITU
Foreword
i
TheITUArtificialIntelligenceandMachineLearning(AI/ML)ChallengesarecompetitionswhereanyonecanparticipatetosolveproblemstatementstoadvancetheachievementofSustainableDevelopmentGoals(SDGs)usingAI/ML.Thecompetitionsenableparticipantstoconnectwithnewpartners–andnewtoolsanddataresources–toachievegoalssetoutbyproblemstatementscontributedbyindustryandacademia.
Iampleasedtosaythatthesecompetitionshavewelcomedover8,000participantssincetheirlaunchin2020.
ThecompetitionsstimulateglobalaccesstoAI/MLexpertiseandcapabilitiesandempowerparticipantstocreate,train,and
deployMLmodelsbyofferingcuratedproblemstatements,data,technicalwebinars,mentoring,andhands-ontrainingsessions.Thisenhancesparticipants'skillsandglobalrecognitionandalsosupportsamoreinclusiveITUstandardizationprocessbypavingthewayforparticipantstomakevaluablecontributionstoITU'sspecifications.
Morethan70percentoftheparticipantsin2023werestudents,withalargemajorityfromtheAfricanregion.
Tosharetheoutcomeswiththelargercommunity,solutionssubmittedaresharedasopensourceinseveralrepositoriesontheChallengeGitHub:
/ITU-AI-ML-in-5G
-Challenge
.
Thisreporthighlightstheimportantworkofteamsacrosstheglobe.ItfeatureswinningsolutionsthataretheresultofinnovativeapproachestosolvingproblemswithapplicationsofAIacrossseveraldomains.
SeizoOnoe
DirectorITUTelecommunicationStandardizationBureau
i
Tableofcontents
Foreword
ii
Acronyms
vi
1ExecutiveSummary
1
2Introduction
3
3DomainsandAreasofCompetition
5
3.1AI/MLin5Gand6G(CommunicationNetworks)
5
3.2GeospatialArtificialIntelligence
6
3.3tinyML
6
3.4AIforClimateAction
7
3.5FusionEnergy
7
4Participation
8
4.1MotivationtoParticipate
8
4.2Statistics
9
4.3ChallengePhases/Timeline
11
5Problemstatements
13
6Winningsolutions
15
6.1AI/MLfor5G-EnergyConsumptionModelling
15
6.2Build-a-thon
16
6.3GraphNeuralNetworks(GNN)
16
6.4SmartWeatherStation
17
7Incentives
18
7.1Prizes
18
7.2Certificates
18
8Webinars
20
9Capacitybuilding
21
9.1TechnicalWebinars
21
9.2Hands-OnWorkshops
21
9.3MentoringSessions
21
9.4Round-TableDiscussions
21
iii
9.5OnlineLearningResources
22
9.6CertificationandRecognition
22
10Intellectualpropertyrights
23
11ChallengeSolutionContributions
24
11.1Standards
24
11.2OpenSource
24
11.3JournalandConferencePublications
24
11.4Ecosystemcreation
26
12Judgingthesubmissions
28
12.1Commonoutputformat
28
12.2Additionaloutputforopen-sourcecode
28
12.3Additionaloutputforproprietarycode
28
12.4EvaluationCriteria
28
13Resources
30
14Benefits
31
14.1Benefitsforpartnersandcollaborators
31
14.2BenefitsforParticipants
31
14.3SpecialBenefitsforCertainSponsorCategories
31
15Impact
32
15.1AdvancingTechnologicalInnovation
32
15.2PromotingGlobalCollaboration
32
15.3EnhancingPracticalSkills
32
15.4ContributingtoStandardsDevelopment
32
15.5AddressingSDGs
32
15.6RecognizingandRewardingExcellence
32
15.7BuildingaThrivingEcosystem
33
15.8ShowcasingandDisseminatingResearch
33
16Testimonials
34
17Conclusion
35
Annex1:Data
36
Annex2:ProblemStatementSample
38
Annex3:DataSharingGuidelines
39
iv
Annex4:HostOnboardingGuidelines
44
Listoffiguresandtables
Figures
Figure1:Geographicdistributionofparticipantsbycountry/regionfrom2020
-2023
3
Figure2:Distributionofparticipantsforthechallenge
3
Figure3:VariousdomainscoveredintheITUAI/MLChallenge
4
Figure4:Motivationtoparticipateinthechallenge
8
Figure5:Cumulativegrowthofparticipantsfromthetoptencountriessince2020
9
Figure6:CombinedGrowthoftheChallengebyType
9
Figure7:Participationandtotal#submissionsfor2023invariousdomainsof
theITUAI/MLChallenges
11
Figure8:ParticipantsGenderDistribution
11
Figure9:2023ITUAI/MLChallengeTimeline
12
Figure10:SampleChallengeproblemstatements
13
Figure11:WinnerannouncementofAI/MLfor5G-EnergyConsumption
ModellingchallengeatCOP28inDubai
15
Figure12:2ndGNNetWorkshop
17
Figure13:Aurorasmartweatherstation
17
Figure14:WinnerCertificates
19
Figure15:TheML5Gwebinarseriesin2020
20
Figure16:Thecallforpaperforthespecialissueofthepeer-reviewedITU
JournalforFutureandEvolvingTechnologies
25
Figure17:Ecosystem
26
Figure18:2024ChallengeannouncementinShanghaiduringtheAIfor
GoodInnovateforImpactatWorldAIconference
27
Figure19:TestimonialsfromChallengeorganizersandparticipants
34
Figure20:Guidelines
42
Tables
Table1:CompetitionDetails
10
Table2:ProblemStatementSample
38
Table3:DataClassificationCategories
39
v
Acronyms
ACM
AssociationforComputingMachinery
AI
ArtificialIntelligence
CSV
Comma-separatedValue
FGAN
FocusGroupAutonomousNetworks
GNN
GraphNeuralNetworks
IEEE
InstituteofElectricalandElectronicsEngineers
IPR
IntellectualPropertyRights
ITUJ-FET
InternationalTelecommunicationUnionJournalonFutureandEvolvingTechnologies
ML
MachineLearning
NDA
Non-disclosureAgreement
PoC
ProofofConcept
RRM
RadioResourceManagement
SDG
SustainableDevelopmentGoal
SG
StudyGroup
TSB
TelecommunicationStandardizationBureau
vi
CrowdsourcingAIandMachineLearningsolutionsforSDGs
1ExecutiveSummary
ArtificialIntelligence(AI)isadominanttechnologyandimpactseveryaspectofsociety.AsAIcontinuestoevolve,AI/ML-enabledapplicationsandservicesintegratedwiththefutureofcommunicationnetworkswoulddriveinnovationandrelatedstandards.ITUisattheforefrontofexploringhowbesttoapplyAI/MLthroughvariousinitiativesandprojectstoadvancetheachievementofsustainabledevelopmentgoals(SDGs).ITUAI/MLcompetitions,bringtogetherAI/MLstakeholderstobrainstorm,innovateandsolverelevantproblemsintelecommunicationnetworks,Geospatialchallenges,tinyMLusecases,etc.Buildingonitsstandardscommunity,ITUhasbeenconductingglobalITUAI/MLChallengesmappedtoseveralareasimpactingSDGs.
TheITUAI/MLin5GChallengeaimstosolvereal-worldcommunicationnetworkproblemsusingAIandML,focusingonthedevelopmentandoptimizationof5Gandemerging6Gtechnologies.Participantsengageintechnicalwebinars,mentoring,andhands-onsessions,creatinganddeployingMLmodels,andapplyingITUstandards,therebygainingglobalrecognitionfortheirinnovativesolutions.
TheGeoAIChallengeappliesAI/MLtoaddressreal-worldgeospatialproblemsrelatedtotheUNSDGs.Participantsgainpracticalexperiencebytacklingissuessuchasenvironmentalmonitoring,urbanplanning,anddisasterresponse,promotinginnovativesolutionsforsustainabledevelopment,andofferingprizes,recognition,andcertificatestotopperformers.
ThetinyMLChallengeexploresapplyingmachinelearningtotinydevicesandembeddedsystemstobuildcost-effective,low-power,reliable,andeasy-to-install,solutionsbyleveragingtinyMLtechnology.
TheITUAI/MLChallengeofferscarefullycuratedproblemstatements,amixofreal-worldandsimulateddata,technicalwebinars,mentoring,andhands-onsessions.TeamsparticipatingintheChallengeenable,create,train,anddeployMLmodelsfordifferentdomains.Thisenablesparticipantstonotonlyshowcasetheirtalent,testtheirconceptsonrealdataandreal-worldproblems,andcompeteforglobalrecognitionincludingprizemoneyandcertificates,butalsoentertheworldofITUstandardsbymappingtheirsolutionstoourspecifications.
TheITUAI/MLChallengehashadprofoundimpactsacrossmultipledimensions.
1
CrowdsourcingAIandMachineLearningsolutionsforSDGs
Standards:ThechallengehasfacilitatedtheintegrationofinnovativeAI/MLsolutionsintoITUspecifications,ensuringnewtechnologiesarestandardizedandwidelyadopted.
Research:Thechallengehasspurredcutting-edgeinvestigationsandpracticalapplications,leadingtonumerouspublicationsinjournalsandconferences.
Communitybuilding:ThechallengehasalsofosteredavibrantcommunityofAI/MLpractitioners,withmembersfromdiversebackgroundsandover100countries,creatingaglobalnetworkofcollaboratorsandinnovators.
Capacitybuilding:Thechallengehasprovidedparticipantswithinvaluableskillsthroughtechnicalwebinars,hands-onworkshops,andmentoringsessions,enhancingtheirabilitytotacklereal-worldproblems.
Overall,theITUAI/MLChallengehassignificantlycontributedtotechnologicaladvancement,globalcollaboration,andthedevelopmentofarobustecosystemthatdrivesprogressinAI/MLandcommunicationnetworks.
2
CrowdsourcingAIandMachineLearningsolutionsforSDGs
2Introduction
TheITUAI/MLChallengewaslaunchedin2020.Thefirsteditionranonthetheme“HowtoapplyITU’sMLarchitecturein5Gnetworks”andappliedtothecommunicationnetworksdomain(ITUAI/MLin5GChallenge).ITUisattheforefrontofleveragingAI/MLtoachieveSDGs.Throughavarietyofactivitiesandprojects,ITUbringstogethermultiplestakeholderstobrainstorm,innovate,andsolverelevantproblemsacrossdifferentdomains.TheITUAI/MLChallengeisoneofthekeyinitiativesaimedatfosteringglobalcollaborationandinnovationintheapplicationofAI/MLtoSDGswithanemphasisoncommunicationnetworks.ThischallengehasbeeninstrumentalinexploringhowAIcanbeappliedto5G,geospatialtechnologies,tinyML,andotherareastodriveprogresstowardstheSDGs.
Figure1:Geographicdistributionofparticipantsbycountry/regionfrom2020-2023
Theboundariesandnamesshown,andthedesignationsusedonthismapdonotimplyofficialendorsementoracceptancebytheUnitedNations/ITU.
Note:participantsfrommorethan100countries/regionsparticipatedintheChallenge.Thetopfourcountriesareasfollows:India,UnitedStates,ChinaandNigeria.
Figure2:Distributionofparticipantsforthechallenge
Note:morethan57%ofparticipantsareprofessionalsandaround38%arestudents.
3
CrowdsourcingAIandMachineLearningsolutionsforSDGs
Since2020,theITUAI/MLChallengehasevolvedtoincludemultipledomains,eachaddressingspecificareasofinterestandimpact.Thechallengeconnectsparticipantsfromover100countries,includingstudents,professionals,industryexperts,andacademia,tosolvereal-worldproblemsusingAI/ML.Thecompetitionsoffercarefullycuratedproblemstatements,amixofreal-worldandsimulateddata,technicalwebinars,mentoring,andhands-onsessions.Participantscreate,train,anddeployMLmodels,enablingthemtoshowcasetheirtalent,testtheirconceptsonrealdata,andcompeteforglobalrecognition,includingprizemoneyandcertificates.ThisinitiativealsoprovidesagatewaytotheworldofITUstandards,asparticipantsmaptheirsolutionstoITUspecifications.
ThedomainscoveredintheITUAI/MLChallengeincludeAI/MLin5Gand6G(orcommunicationnetworks),GeoAI,tinyML,AIforClimateAction,andFusion.Eachdomainoffersuniqueopportunitiesforparticipantstoapplytheirskillsandgainhands-onexperienceinaddressingcriticalissues.TheAI/MLin5GChallengefocusesontheapplicationofAI/MLincommunicationnetworks,optimizingthedevelopmentandperformanceof5Gand6Gtechnologies.TheGeoAIChallengeaddressesgeospatialproblemsrelatedtotheUNSDGs.ThetinyMLChallengeexplorestheapplicationofMLintinydevicesandembeddedsystems.TheAIforClimateActionInnovationFactoryaimstodevelopAIsolutionsforcombatingclimatechange,whiletheFusionChallengefocusesonusingMLforpredictivemodelinginfusionenergysystems.Throughthesediversedomains,theITUAI/MLChallengecontinuestodriveinnovationandcollaboration,contributingtotheadvancementofglobalstandardsandthedevelopmentofimpactfulsolutions.
Figure3:VariousdomainscoveredintheITUAI/MLChallenge
The2023ITUAI/MLChallengesawmorethan3300participantsfrom100+countriesinthechallenge.Theseparticipantscontributedover20'000submissionsandreceived56'267CHFinprizemoneyfromITUandsponsors.Detailedstatisticsofthechallengecanbefoundinsection4.2.
4
CrowdsourcingAIandMachineLearningsolutionsforSDGs
3DomainsandAreasofCompetition
Since2020,theITUAI/MLChallengehasevolvedtoincludemultipledomains,eachaddressingspecificareasofinterestandimpact.Thesecompetitionsarerunannually,witheacheditionintroducingnewthemesandexpandingthescopeofthechallenge.ThecompetitionshaveincludedAI/MLin5Gand6G(i.e.communicationnetworks),GeoAI,tinyML,AIforClimateAction,andFusion.Eachdomainoffersuniqueopportunitiesforparticipantstoapplytheirskills,gainhands-onexperience,andcontributetosolvingpressingglobalissues.
3.1AI/MLin5Gand6G(CommunicationNetworks)
Applyingmachinelearningin
communicationnetworks
TheITU
AI/MLin5GChallenge
rallieslike-mindedstudentsandprofessionalsfromaroundtheglobetosolvereal-worldproblemsincommunicationnetworksbyapplyingAIandmachinelearning(ML).TheAI/MLin5GChallenge,launchedasthefirsteditionin2020,hasbecomeacornerstoneoftheITUAI/MLChallenge.ThiscompetitionfocusesonapplyingAI/MLincommunicationnetworks,particularlyinthedevelopmentandoptimizationof5Gandemerging6Gtechnologies.Astelecommunicationnetworksevolvetowards6G,AIisexpectedtobeintegraltothenetwork’sdesign,enablingadvancedfeatureslikeAI-nativeinfrastructure,pervasiveintelligence,andreal-timeresponsiveness.
ITUAI/MLin5GChallengeanalysespracticalproblemsinnetworksusingrealandsimulateddata.Asweaimforenhancedefficiency,reliability,andrichuserexperienceusingAI/MLincommunicationnetworks,ITUcallsfortheapplicationofitspre-standardandstandardconceptsinnetworkmanagement,security,optimization,andbeyondtosolvereal-worldproblems.IntheITUAI/MLin5GChallenge,participantsfromvariousbackgroundscollaboratetosolvereal-worldproblemsusingAI/ML,workingoncuratedproblemstatementswithaccesstoamixofreal-worldandsimulateddata.Thechallengeincludestechnicalwebinars,mentoring,andhands-onsessions,enablingparticipantstocreate,train,anddeployMLmodelsforcommunicationnetworks.ThecompetitionnotonlyshowcasestalentandinnovativesolutionsbutalsoprovidesapathwayforparticipantstoengagewithITUstandardsandgainglobalrecognition.
5
CrowdsourcingAIandMachineLearningsolutionsforSDGs
3.2GeospatialArtificialIntelligence
ApplyingMachineLearningtoGeospatialAnalysis
The
GeospatialArtificialIntelligenceChallenge
(GeoAI),nowenteringitsthirdeditionin2024,addressesreal-worldgeospatialproblemsbyapplyingAI/ML.ThiscompetitionaimstosolveissuesrelatedtotheUNSDGsusingreal-worlddata.ParticipantsgainpracticalexperienceinapplyingAI/MLtogeospatialdata,tacklingproblemssuchasenvironmentalmonitoring,urbanplanning,anddisasterresponse.Thechallengepromotesinnovativesolutionsthatcontributetosustainabledevelopment,offeringprizes,recognition,andcertificatestothetopperformers.
3.3tinyML
ApplyingMachineLearningtoEdgeDevices
The
tinyMLChallenge
,organizedincollaborationwithindustrypartners,explorestheapplicationofmachinelearninginthedomainoftinydevicesandembeddedsystems.Thesecondeditionofthischallengein2023focusedondevelopingaNext-GentinyMLSmartWeatherStationthatiscost-effective,low-power,reliable,andeasytoinstallandmaintain.Thisweatherstationwillmeasurevariousweatherconditions,particularlyrainandwind,usingtinyMLtechnology.Additionally,thetinyMLChallengeincludesprojectsonscalableandhigh-performancesolutionsforcropdiseasedetectionandwildlifemonitoring.Thiscompetitionencouragesinnovationinenvironmentalmonitoringandagriculture,leveragingthecapabilitiesoftinyML.
6
CrowdsourcingAIandMachineLearningsolutionsforSDGs
3.4AIforClimateAction
AnacceleratorplatformforAI-poweredclimatechangesolutionsfromstart-ups
Climatechangeisasignificantglobalchallengewithfar-reachingimpacts.The
AIforClimateAction
InnovationFactory
,launchedattheAIforGoodSummitin2024,seekstoadvancetheuseofAIincombatingclimatechange.ThisinitiativebuildsonprevioussuccessesandfocusesondevelopingAIsolutionsthataddressclimate-relatedissues.The2024editionaimstoshowcasethesesolutionsatCOP29,theUnitedNationsClimateChangeConferenceinBaku,Azerbaijan.ThewinnersofthiscompetitionwillberecognizedfortheircontributionstotheGreenDigitalActiontrack,highlightingtheroleofAIinpromotingsustainablepracticesandmitigatingclimatechange.
3.5FusionEnergy
The
FusionChallenge
,partoftheIAEACoordinatedResearchProjectonAIforFusion,exploresthepotentialofMLinpredictivemodelingforfusionenergysystems.Fusionenergy,generatedbycombininglightelementstoformaheavierone,representsapromisingalternativeenergysource.Thischallengeengagesthescientificcommunityindevelopingcross-machinedisruptionpredictionmodelsusingML,utilizingdatafromfusiondevicessuchasAlcatorC-Mod,J-TEXT,andHL-2A.Participantsgainhands-onexperienceinAI/MLapplicationsrelevanttofusionenergyscience,competingforprizes,recognition,andcertificates.Thiscompetitionsupportstheglobalefforttomakefusionacommerciallyviableenergysource.
TheITUAI/MLChallenge,throughitsdiversedomainsandcompetitions,continuestodriveinnova-tionandcollaborationinAI/ML.Byaddressingcriticalissuesacrossvarioussectors,thechallengecontributestotheadvancementofglobalstandardsandthedevelopmentofsolutionsthathaveasignificantimpactonsociety.
7
CrowdsourcingAIandMachineLearningsolutionsforSDGs
4Participation
ParticipationisopentoITUmembersandanyindividualfromanITUMemberState.“Participants”areindividualsorcompaniesthatparticipateintheITUAI/MLin5GChallenge,providingsolutionstoproblemsetsoftheChallenge.
Therearetwocategoriesofparticipants:studentandprofessional.
4.1MotivationtoParticipate
Aftereachiterationofthechallengeiscompleted,participantsareaskedtocompleteasurveypreparedbythechallengesecretariat.Oneofthekeyquestionsinthesurveyfocusesontheparticipants'motivationforjoiningthechallenge.ThefigurebelowillustratesthevariousreasonswhyindividualschoosetoparticipateintheITUAI/MLChallenges.Notably,theprimarymotivationformostparticipantsistheopportunitytoupskillorenhancetheirprofessionaloracademiccapabilities,ratherthanthepursuitofprizes.
Figure4:Motivationtoparticipateinthechallenge
8
CrowdsourcingAIandMachineLearningsolutionsforSDGs
4.2Statistics
ITU’smachinelearningchallengeshaveseenanexponentialincreaseinparticipationsince2020,welcomingover8,000participantsfrommorethan100countries,withdevelopingcountriesparticularlywellrepresented,asthechartbelowdemonstrates.
Figure5:Cumulativegrowthofparticipantsfromthetoptencountriessince2020
Thenumberofparticipantshasincreasedfourtimessince2020reachingaround8000intheyear2023.Seethegraphbelow:
Figure6:CombinedGrowthoftheChallengebyType
9
CrowdsourcingAIandMachineLearningsolutionsforSDGs
Participantsinthechallengehavemademorethan23’000submissionstothechallengebyJuneof2024.ThebelowtablesshowgranularparticipationdetailstosomeproblemstatementsoftheITUAI/MLChallengeproblemstatementsin2023.MostoftheseproblemstatementswerehostedthroughtheZindiplatform.
Table1:CompetitionDetails
10
CrowdsourcingAIandMachineLearningsolutionsforSDGs
Figure7:Participationandtotal#submissionsfor2023invariousdomainsoftheITUAI/MLChallenges
Thegenderdistributiongraphrevealsthatnearly80%oftheparticipantsaremale,highlightingtheimportanceofencouraginggreaterfemaleparticipation.
Figure8:ParticipantsGenderDistribution
4.3ChallengePhases/Timeline
TheITUAI/MLChallengeisrunthroughouttheyeardependingonproblemstatementsprovidedbypartners.Anexampleofachallengetimelineforthe2023ITUAI/MLin5GChallengeisillustratedbelowtoshowthevariousphasesofthechallenge.
11
CrowdsourcingAIandMachineLearningsolutionsforSDGs
Figure9:2023ITUAI/MLChallengeTimeline
12
CrowdsourcingAIandMachineLearningsolutionsforSDGs
5Problemstatements
ParticipantsoftheITUAI/MLChallengecansolvereal-worldproblems(includingthosewithsocialrelevance).ProblemstatementsarecontributedeitherfromITU’sstandardsandspecifications,orfromhostsofproblemstatementswhoareinstitutionsinterestedinadvancingSDGsorcanbedecidedbytheparticipant(s)themselves.Problemstatementswillfallintoaspecificchallengedomainbasedontheproblemowner(host)interestandresources.
The
AIforGoodGlobalSummit
identifiespracticalapplicationsofAI/MLwiththepotentialtoaccelerateprogresstowardsthe
UnitedNationsSustainableDevelopmentGoals
.Solutionsareinvitedinfieldssuchaseducation,healthcareandwellbeing,socialandeconomicequality,climateaction,naturaldisastermanagement,space,andsmartandsafemobility.SelectedteamswillbeinvitedtoparticipateintheAIforGoodSummit.
Figure10:SampleChallengeproblemstatements
TheITUAI/MLChallengecontinuestohostproblemstatementsfromhostsaroundtheworld.Someofthescheduledproblemstatementsareasfollows:
?GreenTelecom:SmartEnergySupplyScheduling[Smartenergysupplyschedulingforbothcarbonfootprintreductionandnetworkreliabilityguarantee]
?Beam-levelTrafficPrediction
?SpecializingLargeLanguageModelsforTelecomNetworks
?Ground-levelNO2EstimationChallenge
?RadioResourceManagement(RRM)for6Gin-XSubnetworks
TheITUAI/MLChallengeservesasacrucialbridgebetweencurrentinnovationsandfutureresearchandstandards.Byengagingparticipantsinsolvingreal-worldproblemsusingAIandML,thechallengefostersthedevelopmentofpracticalsolutionsthatcaninformfutureresearchdirections.Thesesolutionsoftenleadtonewinsightsanddiscoveries,fuellingfurtherinvestigationsandacademicstudies.
13
CrowdsourcingAIandMachineLearningsol
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年山西工程職業(yè)學(xué)院高職單招(數(shù)學(xué))歷年真題考點(diǎn)含答案解析
- 2025年山東商業(yè)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))歷年真題考點(diǎn)含答案解析
- 2025年宜春職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測試近5年常考版參考題庫含答案解析
- 胡華生活化話課程
- 課堂教學(xué)安全
- Excel基礎(chǔ)知識課件
- B超健康知識講座課件
- bibexcel知識圖譜教程電
- 創(chuàng)新產(chǎn)品助力商業(yè)成功
- 鐵嶺衛(wèi)生職業(yè)學(xué)院《化工廢水處理》2023-2024學(xué)年第二學(xué)期期末試卷
- 2023護(hù)理重癥培訓(xùn)班結(jié)業(yè)理論考核試題題庫及答案
- 技術(shù)服務(wù)和售后服務(wù)內(nèi)容及措施
- “雙碳”碳達(dá)峰碳中和完全解讀
- 2024專利代理人考試真題及答案
- 中國老年骨質(zhì)疏松癥診療指南(2023)解讀課件
- 精 《校園的早晨》同步課件
- 2024年河南省機(jī)關(guān)單位工勤技能人員培訓(xùn)考核高級工技師《職業(yè)道德》題庫
- Revision1(課件)人教新起點(diǎn)版英語四年級下冊
- 《紅色故事會傳承革命精神》主題班會
- 盤扣式卸料平臺施工方案
- 環(huán)境信息數(shù)據(jù)共享交換規(guī)范-編制說明
評論
0/150
提交評論