八年級數學錯題分析_第1頁
八年級數學錯題分析_第2頁
八年級數學錯題分析_第3頁
八年級數學錯題分析_第4頁
八年級數學錯題分析_第5頁
已閱讀5頁,還剩5頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、如圖11-1,指出對應邊和另外一組對應角。錯解:對應邊是AB與AD,AC與AE,BD與CE,另一組對應角是∠BAD與∠CAE。錯誤原因分析:對全等三角形的表示理解不清,在全等三角形的表示中對應頂點的位置需要對齊,不能根據對應頂點來確定對應角和對應邊。同時對全等三角形中對應角與對應邊之間的對應關系也沒有理解,對應角所對的邊應該是對應邊,如∠2所對的邊是AB,∠1所對的邊是AC,因為∠1=∠2,即∠1與∠2是對應角,所以AB與AC是對應邊。正解:對應邊是AB與AC,AE與AD,BE與CD,另一組對應角是∠BAD與∠CAE。2、如圖11-2,在中,AB=AC,AD=AE,欲證,須補充的條件是()。A、∠B=∠C;B、∠D=∠E;C、∠BAC=∠DAE;D、∠CAD=∠DAE。錯解:選A或B或D。錯誤原因分析:對全等三角形的判定定理(SAS)理解不清,運用SAS判定定理來證明兩三角形全等時,一定要看清角必須是兩條對應邊的夾角,邊必須是夾相等角的兩對應邊。上題中AB與AC,AD與AE是對應邊,并且AB與AD的夾角是∠BAD,AC與AE的夾角是∠CAE,而∠B與∠C,∠D與∠E不是AB與AC,AD與AE的夾角,故不能選擇A或B。∠CAD與∠DAE不是和中的內角,故不能選擇D。所以只有選擇C,因為∠BAC+∠CAD=∠DAE+∠CAD,即:∠BAD=∠CAE。正解:選C。3、如圖11-3所示,點0為碼頭,A,B兩個燈塔與碼頭的距離相等,0A、OB為海岸線,一輪船離開碼頭,計劃沿∠AOB的平分線航行,在航行途中,測得輪船與燈塔A和燈塔B的距離相等,試問輪船航行是否偏離指定航線?錯解:不能判斷,因為應該是到角兩邊距離相等(即垂線段相等)的點才在角平分線上。錯誤原因分析:生搬硬套“角的內部到角的兩邊的距離相等的點在角的平分線上”,而忽略了角平分線的實質是所分得的兩個角相等,本題由OA=OB,輪船到兩燈塔的距離相等,再加上已行的航線,可構造出一對全等三角形,從而可得到已行航線把∠AOB分成相等的兩個角,即沒有偏離指定航線。正解:沒有偏離指定航線,如圖11-4,依題意可得:OA=OB,AC=BC,OC=OC,,∴∠AOC=∠BOC,即OC平分∠AOB,∴沒有偏離指定航線。4、如圖11-5,,E為AC和BD的交點,與全等嗎?說明理由。錯解:。理由如下:錯誤原因分析:兩個三角形全等是正確的,但說明的理由不正確,三個角對應相等不能作為三角形全等的判定方法。在初中數學中,往往有較多同學會從自己錯誤的主觀意識出發,自己去編造一些不正確的定理,用來證明和計算。這就要求我們學生在學習的過程中,要準確地理解和掌握自己所學過的一些性質和判定定理。另外,在書寫的要求上也要養成嚴謹的習慣。象上面問題中,三組對應角相等的兩個三角形全等,這不是三角形全等的判定方法。在書寫上也沒有按照全等三角形書寫的形式來規范書寫。正解:。理由如下:5、已知,如圖11-6,都是等邊三角形,求證:BE=DC。錯解:錯誤原因分析:只靠眼睛直觀,主觀臆斷,誤認為D、A、E三點在同一直線上,是造成解題的錯誤的主要原因。實際上由于的大小不確定,所以D、A、E三點不一定在同一直線上,而應該尋找相等。象這種錯誤在初中學生解答有關幾何題時經常出現的,這要求我們學生在審題時一定要審清楚題目中的已知條件及隱含條件,題目中沒有出現的,我們不能去編造。正解:6、到三角形三邊所在的直線的距離相等的點有個。錯解:1個。錯誤原因分析:三角形的三個內角角平分線會相交于一點,且這個點到三角形三邊的距離相等。由于所求的點是到三邊所在直線的距離相等,因此,相鄰兩個外角的角平分線的交點到三邊所在直線的距離也相等,所以符合條件的點有4個。正解:4個。如圖11-7,四個點分別是D、E、F、G。7、寫出下列各圖形的對稱軸。(1)、角的對稱軸是;(2)、等腰三角形的對稱軸是;(3)、圓的對稱軸是。錯解:(1)角的平分線;(2)等腰三角形底邊上的高;(3)圓的每一條直徑。錯誤原因分析:對對稱軸的概念理解不準確,對稱軸指的是一條直線,不能將它誤認為是射線和線段。象角平分線是射線而不是直線,所以它不是角的對稱軸,等腰三角形底邊上的高是線段,也不是直線,所以它也不是等腰三角形的對稱軸,圓的直徑是線段,也不是直線,所以它也不是圓的對稱軸。正解:(1)、角平分線所在的直線;(2)、等腰三角形底邊上的高所在的直線;(3)、過圓心的每一條直線。8、已知點A(1-a,5)與點B(3,b)關于y軸對稱,求a-b的值。錯解:∵點A(1-a,5)與點B(3,b)關于y軸對稱,∴1-a=3,b=-5,∴a=-2,∴a-b=-2-(-5)=3。錯誤原因分析:沒有正確理解和掌握關于y軸對稱的點的坐標特征,在平面直角坐標系中,關于x軸對稱的兩個點的橫坐標相等,縱坐標互為相反數;關于y軸對稱的兩個點的縱坐標相等,橫坐標互為相反數。即點P(a,b)關于x軸的對稱點的坐標為(a,-b),關于y軸的對稱點的坐標為(-a,b)。這題是將關于x軸對稱點的坐標特征與關于y軸對稱點的坐標特征搞混淆了。正解:∵點A(1-a,5)與點B(3,b)關于y軸對稱,∴1-a=-3,b=5,∴a=4,b=5,∴a-b=4-5=-1。9、等腰三角形的兩邊長分別為4cm和9cm,試求其周長。錯解:分情況討論:①、當腰長為4cm時,底邊長就為9cm。∴等腰三角形的周長為4×2+9=17(cm)。②、當腰長為9cm時,底邊長就為4cm。∴等腰三角形的周長為9×2+4=22(cm)。錯誤原因分析:本題分兩種情況考慮了等腰三角形的特點(即腰長為4cm與9cm兩種情況),但忽略了構成三角形的條件(三角形三邊之間的關系:兩邊之和大于第三邊,兩邊之差小于第三邊。)。因為4+4<9,所以4cm不能作為腰長。只有9cm為腰長,4cm為底邊一種情況成立。正解:分情況討論:①、當腰長為4cm時,底邊長就為9cm。∵4+4<9,∴這種情況不成立。②、當腰長為9cm時,底邊長就為4cm。∴等腰三角形的周長為9×2+4=22(cm)。∴等腰三角形的周長為22cm。10、等腰三角形一腰上的高等于腰長的一半,求其頂角。錯解:如圖12-1,AB=AC,BD⊥AC于D,且,∴∠A=30°,即其頂角為30°。錯誤原因分析:等腰三角形是比較特殊的三角形,它有許多特性和,在解決與等腰三角形有關的問題時,一定要全面地分析問題,不漏解,上題只考慮到腰上的高線在三角形的內部是產生錯解的原因。事實上,對于本題腰上的高線還可能在三角形的外部,應分兩種情況進行求解。正解:分兩種情況來討論:①、當高線在三角形內部時,如圖12-1,AB=AC,BD⊥AC于D,且,∴∠A=30°,即其頂角為30°。②、當高線在三角形外部時,如圖12-2,AB=AC,BD⊥AC于D,且,∴∠BAD=30°,∴∠BAC=150°。∴等腰三角形的頂角為30°或150°。11、在一次數學課上,王老師在黑板上畫出圖12-3,并寫下了四個等式:(1),(2),(3),(4)。BEDABEDAC圖-12-3已知:求證:是等腰三角形。錯解:已知:,,求證:是等腰三角形。證明:∵,,∴∴∴是等腰三角形.錯誤原因分析:受思維定勢的影響,以為三個條件就可證兩個三角形全等,思維混亂,,運用了不成立的命題“SSA”去證明題目,即犯了“虛假理由”的錯誤。說明對兩個三角形全等的判定定理掌握不透,上課時沒真正弄懂定理的運用。中等偏下的學生易犯這種錯誤。正解:如:已知:,,求證:是等腰三角形。證明:∵,,∴∴∴是等腰三角形。12、下列說法正確的是()。如果線段AB和關于某條直線對稱,那么AB=;如果點A和點到直線的距離相等,則點A與點關于直線對稱;如果AB=,且直線MN垂直平分A,那么線段AB和關于直線MN對稱;如果在直線MN兩旁的兩個圖形能夠完全重合,那么這兩個圖形關于直線MN對稱。錯解:選B或C或D。錯誤原因分析:對軸對稱的定義和性質理解不夠準確是這題解題錯誤的主要原因,因為線段AB和關于某直線對稱,則沿著這條直線對折AB與一定能夠重合,所以AB=。故選A。B、C、D三種情況的反例如圖12-4所示。正解:選A。13、下列說法正確的是()。A、-8是的算術平方根本;B、25的平方根是±5;C、4是-16的算術平方根;D、1的平方根是它本身。錯解:選A或C或D。錯誤原因分析:對平方根和算術平方根的含義沒有準確地理解是出現解題錯誤的主要原因。A項沒有弄清算術平方根是不可能為負數的,它是一個非負數;C項沒有理解負數是沒有平方根的,也就沒有算術平方根了;D項誤認為一個正數的平方根只有一個,其實一個正數的平方根有兩個,且這兩個平方根互為相反數。正解:選B。14、填空:(1)、的平方根是;(2)、的算術平方根是。錯解:(1)、±9;(2)、-4。錯誤原因分析:(1)錯在將求的平方根當成了求81的平方根了,這也說明了學生對平方根的表示方法不熟悉(平方根用符號表示為:)。因為=9,而9的平方根是±3,所以的平方根是±3。(2)、錯在對算術平根的意義“一個正數只有一個正的算術平方根”理解不透徹,因為=16,而16的算術平方根是4。所以的算術平方根是4。正解:(1)、±3;(2)、4。15\、已知,化簡。錯解:。錯誤原因分析:錯在對算術平方根的含義理解不透徹,算術平方根是一個非負數,另外對理解也不透徹。因為,所以,也就是說。正解:∵,∴,∴。16\、如果,那么的值是。錯解:1。錯誤原因分析:錯誤原因有兩種可能,一是由得到=1,這樣就把漏掉了;二是對立方根的含義理解不透徹(一切實數都有立方根),誤認為負數沒有立方根,從而漏掉了當時,。正解:±1。17、解答下列兩個小題。(1)、函數的自變量的取值范圍是。(2)、等腰三角形的周長是10,底邊長為y,腰長為x,求y關于x的函數關系式及自變量x的取值范圍。錯解:(1)、。(2)、由題意得,。由,解得。錯誤原因分析:(1)、錯在只考慮了被開方數要為非負數,忽略了分母要不為零才有意義這一個條件。故x的取值范圍應該滿足且這兩個條件,即且。(2)、錯在只考慮到底邊長y要取正數,忽略了腰長x也要取正數,更忽略了三角形中的三邊所要滿足的關系。故x的取值范圍應該滿足、、這三個條件,即滿足、且。所以。正解:(1)、且。(2)、由題意得,。由且,解得。18、某蠟燭原長20cm,點燃后每小時燃燒5cm,求蠟燭的剩余長度y(cm)與點燃時間x(h)之間的函數關系式,并畫出函數的圖象。錯解:根據題意,得。列表:x01234y20151050函數圖象如下圖14-1:錯誤原因分析:錯在畫函數圖象時,沒有考慮到函數的圖象中的自變量x的取值范圍,在這個問題中,自變量x要滿足且,即。在畫函數圖象時,應該體現出自變量的取值范圍來。正解:根據題意,得。列表:x01234y20151050函數圖象如下圖14-2:19、當為何值時,函數是正比例函數。錯解:由,得。所以當時,函數是正比例函數。錯誤原因分析:錯在對正比例函數的定義理解不透徹,正比例函數要滿足以下兩個條件:①、自變量的指數要為1;②、正比例系數不為0。所以此題要考慮隱含條件正比例系數,即。正解:根據題意,得:且,解得。故當時,函數是正比例函數。20、如果直線不經過第一象限,求實數m的取值范圍。錯解:∵,∴直線經過第二、四象限,∵不經過第一象限,∴經過第三象限。∴。錯誤原因分析:考慮不全面,直線不經過第一象限,有兩種情況:①、只經過第二、三、四象限;②、只經過第二、四象限。因為正比例函數是一次函數的特例。正解:∵,∴直線一定經過第二、四象限,當時,圖象經過第二、三、四象限;當時,圖象經過原點及第二、四象限。∴。21、已知一次函數的圖象與兩坐標軸圍成的三角形面積為16,求一次函數的解析式。錯解:∵直線與x軸、y軸的交點分別是。∴,∴解得。∴一次函數的解析式是。錯誤原因分析:本題有兩個典型的錯誤:①、由于與x軸交點的位置不確定,可能在x軸的正半軸上,也可能在x軸的負半軸上,所以與坐標軸圍成的直角三角形的底邊(在x軸上的邊)的長度應是,否則容易造成漏解;②、三角形的面積=×底邊×底邊上的高。往往這個很多同學在計算三角形面積時容易把它漏掉。正解:∵直線與x軸、y軸的交點分別是。∴,解得。∴一次函數的解析式是或。22、已知直線中,自變量的取值范圍是,相應函數的范圍是,求該函數的解析式。錯解:由,得,即,而,∴函數的解析式為。錯誤原因分析:由于題目中沒有明確的正、負,而一次函數在時,y隨x的增大而增大;時,y隨x的增大而減小。本題錯在只考慮了其中一種情況,而忽略了這種情況。正解:當時,∵y隨x的增大而增大,∴時,;時,。解得∴函數的解析式為。當時,y隨x的增大而減小,∴時,;時,。解得∴函數的解析式為。綜上所述,函數的解析式為或。23、已知一次函數的圖象如圖14-3所示。(1)、當為何值時,?(2)、當為何值時,?錯解:(1)、當時,。(2)、當時,。錯誤原因分析:審題不清楚,對一元一次不等式與一次函數的關系理解不透徹,其實尋找的解集,就是尋找當為何值時,一次函數的圖象在軸的上方;尋找的解集,就是尋找當為何值時,一次函數的圖象在直線的下方。正解:(1)、當時,。(2)、當時,24、計算:(1)、(2)、錯解:(1)、(2)、錯誤原因分析:(1)、單項式乘以單項式時,應注意以下兩點:①、只在一個單項式中含有的字母,特別是當指數是1時,容易被丟掉;②、在解決含有加減法的混合運算中,要注意運算順序,在每一步運算過程中,要正確確定符號。象(1)題中就把字母z丟掉了。(2)、對多項式乘以多項式的法則理解不透徹,多項式乘以多項式時,是用其中一個多項式的每一項去乘以另一個多項式的每一項,再把所乘的積相加。(2)題中錯在只是將第一個多項式的第一項、第二項分別與第二個多項的第一項、第二項相乘。這樣就漏掉了一些項。正解:(1)、(2)、25、填空:(1)、=;(2)、已知是一個完全平方式,則=。錯解:(1)、或;(2)、﹣4。錯誤原因分析:這兩道題目錯在對乘法公式理解不透徹,完全平方公式是,在這個公式中可以代替一個字母、也可代替一個數字或是一個代數式,象(1)題中的第一種錯誤情況就是沒有把系數2和3也進行平方,(2)中錯在只考慮了一種情況。平方差公式是,同學在運用乘法公式進行運算時,往往會把它和完全平方公式搞混淆。象(1)題中的第二種錯誤情況就是這樣。正解:(1)、;(2)、±4。26、計算:(1)、(2)、錯解:(1)、(2)、錯誤原因分析:上面兩題的錯誤是先做了后面的乘除法再做前面的除法,導致運算結果錯誤,也就是運算順序弄錯了,同一級運算應從左向右依次進行。另外(2)題中,應該把看作一個整體,也應該4次方。正解:(1)、(2)、27、計算:錯解:錯誤原因分析:上題的錯誤主要是臆斷運算法則,對整式的除法運算掌握不牢固,理解不透徹,學生仿照乘法的分配律,將分別去除以中括號里的兩項,再把商相減。其實除法是沒有分配律的。要注意運算順序,有括號的先算括號里面的。正解:28、分解因式:錯解:錯誤原因分析:有些同學把多項式的各項都乘以3,得,再分解為,顯然,這種解法沒有遵循因式分解必須是恒等變形這一規律,從而得出了錯誤的結果,多項式分解因式時,我們應先看有沒有公因式,如有公因式必須先提公因式。正解:29、分解因式:。錯解:錯誤原因分析:錯在對因式分解的定義理解不是很透徹,因式分解是指把一個多項式化為幾個整式積的形式,而上題結果的最終運算是和的形式。認真觀察這個多項式,先利用加法交換律將和的位置交換一下,然后再根據來分解。正解:30、分解因式:。錯解:錯誤原因分析:本題有兩個錯誤,第一個是對去括號的法則理解不透徹,如果括號前面是負號的,則去掉括號后,括號里的每一項都要改變符號。第二個錯誤是對因式分解的最后結果要滿足什么要求理解不準確,進行因式分解要分解到積中每一個因式都不能再分解為止,而該題中的都還有系數公因式沒有提出來,還可以再分解。正解:31、先化簡,再求值:,其中.錯解:錯誤原因分析:這題錯在對乘法公式理解不準確,學生在運用乘法公式進行運算時,往往會把平方差公式和平方差公式搞混淆,平方差公式:。明顯上題中的不符合平方差公式,完全平方公式:。上題中運用完全平方公式進行運算時明顯出錯了。其實上題中若把和分別看作一個整體的話,它恰好符合完全平方公式。正解:32、當時,分式無意義。錯解:錯誤原因分析:本題錯誤的原因是看錯了題目,把分式無意義看成了有意義了,導致解題錯誤。正解:33、先化簡,再取一個你喜歡的值代入求值.錯解:原式=當時,原式=5-5=0.錯誤原因分析:①解答程序不規范,有的學生不化簡就求解,有的學生雖然化簡了,但沒有化到最簡就去求解;②不會通分或通分后分解因式的意識和技能不強,不能有效約分化簡,由前面的基礎學的不好,而影響新知的接收;③首先去分母,把它與分式方程混淆,分式方程對分式化簡產生了負遷移將化簡求值與解方程混為一談;求解時,對分式的意義不理解,不能取0和④化簡過程中符號出錯。正解:34、計算:錯解:錯誤原因分析:錯在弄錯了運算順序,上題只是發現后面兩個式子相乘會等于1,更簡便,卻忽略了這樣做就違背了運算的順序,乘除屬于同級運算,解題時應從左到右依次運算。正解:35、計算:錯解:原式錯誤原因分析:本題錯在錯用分配律,我們知道,是成立的,但,可見,上題是機械地套用了分配律而導致解題錯誤的。正解:原式36、不改變分式的值,把分式中分子與分母中各項的系數都化為整數。錯解:錯誤原因分析:本題錯在錯用了分式的基本性質,分式的基本性質是分式的分子與分母都乘以(或除以)同一個不等于0的整式,分式的值不變。而此題是分子乘以3,分母乘以4,這樣違背了分式的基本性質。正解:37、約分:錯解:錯誤原因分析:本題錯在對約分理解不透徹,約分時,首先要將分子、分母分解因式,為便于約分,在分解因式之前,有必要將分子、分母化為規范形式:1、分子、分母按同一字母的降冪排列;2、分子、分母中各項系數為整數,其中最高次系數為正整數。本題沒有先因式分解,就直接把和約去,因為和并不是它們的公因式,所以不能約分。正解:38、解方程:錯解:方程兩邊同時乘以,得:解得:所以原方程的解是。錯誤原因分析:本題錯在沒有對分式方程的解進行檢驗,解分式方程和整式方程的區別在于解分式方程時要進行檢驗,排除其增根。這一點對于大部分同學來說,都會犯同樣的錯誤,所以要準確理解解分式方程的一般步驟(去分母、去括號、移項、合并同類項、把未知數的系數化為“1”、驗根)。正解:方程兩邊同時乘以,得:解得:經檢驗:是增根,所以原方程無解。39、解方程:錯解:方程兩邊同時乘以,得,,即,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論