2024-2025學年江蘇省南通市如東縣、徐州市豐縣高三數學試題下學期六校聯考試題含解析_第1頁
2024-2025學年江蘇省南通市如東縣、徐州市豐縣高三數學試題下學期六校聯考試題含解析_第2頁
2024-2025學年江蘇省南通市如東縣、徐州市豐縣高三數學試題下學期六校聯考試題含解析_第3頁
2024-2025學年江蘇省南通市如東縣、徐州市豐縣高三數學試題下學期六校聯考試題含解析_第4頁
2024-2025學年江蘇省南通市如東縣、徐州市豐縣高三數學試題下學期六校聯考試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024-2025學年江蘇省南通市如東縣、徐州市豐縣高三數學試題下學期六校聯考試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知非零向量、,若且,則向量在向量方向上的投影為()A. B. C. D.2.閱讀下面的程序框圖,運行相應的程序,程序運行輸出的結果是()A.1.1 B.1 C.2.9 D.2.83.已知復數滿足,則的值為()A. B. C. D.24.一個陶瓷圓盤的半徑為,中間有一個邊長為的正方形花紋,向盤中投入1000粒米后,發現落在正方形花紋上的米共有51粒,據此估計圓周率的值為(精確到0.001)()A.3.132 B.3.137 C.3.142 D.3.1475.設等差數列的前項和為,若,則()A.23 B.25 C.28 D.296.已知,如圖是求的近似值的一個程序框圖,則圖中空白框中應填入A. B.C. D.7.在鈍角中,角所對的邊分別為,為鈍角,若,則的最大值為()A. B. C.1 D.8.已知滿足,則()A. B. C. D.9.已知,滿足,且的最大值是最小值的4倍,則的值是()A.4 B. C. D.10.設為的兩個零點,且的最小值為1,則()A. B. C. D.11.在復平面內,復數對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.在正方體中,點、分別為、的中點,過點作平面使平面,平面若直線平面,則的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實數,滿足約束條件,則的最大值是__________.14.已知,,且,則最小值為__________.15.五聲音階是中國古樂基本音階,故有成語“五音不全”.中國古樂中的五聲音階依次為:宮、商、角、徵、羽,如果把這五個音階全用上,排成一個五個音階的音序,且要求宮、羽兩音階不相鄰且在角音階的同側,可排成______種不同的音序.16.設全集,集合,,則集合______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知(1)當時,判斷函數的極值點的個數;(2)記,若存在實數,使直線與函數的圖象交于不同的兩點,求證:.18.(12分)如圖,已知橢圓經過點,且離心率,過右焦點且不與坐標軸垂直的直線與橢圓相交于兩點.(1)求橢圓的標準方程;(2)設橢圓的右頂點為,線段的中點為,記直線的斜率分別為,求證:為定值.19.(12分)設函數.(Ⅰ)討論函數的單調性;(Ⅱ)若函數有兩個極值點,求證:.20.(12分)已知函數,.(1)當時,求函數的值域;(2),,求實數的取值范圍.21.(12分)某企業為了了解該企業工人組裝某產品所用時間,對每個工人組裝一個該產品的用時作了記錄,得到大量統計數據.從這些統計數據中隨機抽取了個數據作為樣本,得到如圖所示的莖葉圖(單位:分鐘).若用時不超過(分鐘),則稱這個工人為優秀員工.(1)求這個樣本數據的中位數和眾數;(2)以這個樣本數據中優秀員工的頻率作為概率,任意調查名工人,求被調查的名工人中優秀員工的數量分布列和數學期望.22.(10分)已知函數.(1)討論的單調性;(2)若函數在上存在兩個極值點,,且,證明.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

設非零向量與的夾角為,在等式兩邊平方,求出的值,進而可求得向量在向量方向上的投影為,即可得解.【詳解】,由得,整理得,,解得,因此,向量在向量方向上的投影為.故選:D.本題考查向量投影的計算,同時也考查利用向量的模計算向量的夾角,考查計算能力,屬于基礎題.2.C【解析】

根據程序框圖的模擬過程,寫出每執行一次的運行結果,屬于基礎題.【詳解】初始值,第一次循環:,;第二次循環:,;第三次循環:,;第四次循環:,;第五次循環:,;第六次循環:,;第七次循環:,;第九次循環:,;第十次循環:,;所以輸出.故選:C本題考查了循環結構的程序框圖的讀取以及運行結果,屬于基礎題.3.C【解析】

由復數的除法運算整理已知求得復數z,進而求得其模.【詳解】因為,所以故選:C本題考查復數的除法運算與求復數的模,屬于基礎題.4.B【解析】

結合隨機模擬概念和幾何概型公式計算即可【詳解】如圖,由幾何概型公式可知:.故選:B本題考查隨機模擬的概念和幾何概型,屬于基礎題5.D【解析】

由可求,再求公差,再求解即可.【詳解】解:是等差數列,又,公差為,,故選:D考查等差數列的有關性質、運算求解能力和推理論證能力,是基礎題.6.C【解析】

由于中正項與負項交替出現,根據可排除選項A、B;執行第一次循環:,①若圖中空白框中填入,則,②若圖中空白框中填入,則,此時不成立,;執行第二次循環:由①②均可得,③若圖中空白框中填入,則,④若圖中空白框中填入,則,此時不成立,;執行第三次循環:由③可得,符合題意,由④可得,不符合題意,所以圖中空白框中應填入,故選C.7.B【解析】

首先由正弦定理將邊化角可得,即可得到,再求出,最后根據求出的最大值;【詳解】解:因為,所以因為所以,即,,時故選:本題考查正弦定理的應用,余弦函數的性質的應用,屬于中檔題.8.A【解析】

利用兩角和與差的余弦公式展開計算可得結果.【詳解】,.故選:A.本題考查三角求值,涉及兩角和與差的余弦公式的應用,考查計算能力,屬于基礎題.9.D【解析】試題分析:先畫出可行域如圖:由,得,由,得,當直線過點時,目標函數取得最大值,最大值為3;當直線過點時,目標函數取得最小值,最小值為3a;由條件得,所以,故選D.考點:線性規劃.10.A【解析】

先化簡已知得,再根據題意得出f(x)的最小值正周期T為1×2,再求出ω的值.【詳解】由題得,設x1,x2為f(x)=2sin(ωx﹣)(ω>0)的兩個零點,且的最小值為1,∴=1,解得T=2;∴=2,解得ω=π.故選A.本題考查了三角恒等變換和三角函數的圖象與性質的應用問題,是基礎題.11.B【解析】

化簡復數為的形式,然后判斷復數的對應點所在象限,即可求得答案.【詳解】對應的點的坐標為在第二象限故選:B.本題主要考查了復數代數形式的乘除運算,考查了復數的代數表示法及其幾何意義,屬于基礎題.12.B【解析】

作出圖形,設平面分別交、于點、,連接、、,取的中點,連接、,連接交于點,推導出,由線面平行的性質定理可得出,可得出點為的中點,同理可得出點為的中點,結合中位線的性質可求得的值.【詳解】如下圖所示:設平面分別交、于點、,連接、、,取的中點,連接、,連接交于點,四邊形為正方形,、分別為、的中點,則且,四邊形為平行四邊形,且,且,且,則四邊形為平行四邊形,,平面,則存在直線平面,使得,若平面,則平面,又平面,則平面,此時,平面為平面,直線不可能與平面平行,所以,平面,,平面,平面,平面平面,,,所以,四邊形為平行四邊形,可得,為的中點,同理可證為的中點,,,因此,.故選:B.本題考查線段長度比值的計算,涉及線面平行性質的應用,解答的關鍵就是找出平面與正方體各棱的交點位置,考查推理能力與計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

令,所求問題的最大值為,只需求出即可,作出可行域,利用幾何意義即可解決.【詳解】作出可行域,如圖令,則,顯然當直線經過時,最大,且,故的最大值為.故答案為:.本題考查線性規劃中非線性目標函數的最值問題,要做好此類題,前提是正確畫出可行域,本題是一道基礎題.14.【解析】

首先整理所給的代數式,然后結合均值不等式的結論即可求得其最小值.【詳解】,結合可知原式,且,當且僅當時等號成立.即最小值為.在應用基本不等式求最值時,要把握不等式成立的三個條件,就是“一正——各項均為正;二定——積或和為定值;三相等——等號能否取得”,若忽略了某個條件,就會出現錯誤.15.1【解析】

按照“角”的位置分類,分“角”在兩端,在中間,以及在第二個或第四個位置上,即可求出.【詳解】①若“角”在兩端,則宮、羽兩音階一定在角音階同側,此時有種;②若“角”在中間,則不可能出現宮、羽兩音階不相鄰且在角音階的同側;③若“角”在第二個或第四個位置上,則有種;綜上,共有種.故答案為:1.本題主要考查利用排列知識解決實際問題,涉及分步計數乘法原理和分類計數加法原理的應用,意在考查學生分類討論思想的應用和綜合運用知識的能力,屬于基礎題.16.【解析】

分別解得集合A與集合B的補集,再由集合交集的運算法則計算求得答案.【詳解】由題可知,集合A中集合B的補集,則故答案為:本題考查集合的交集與補集運算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)沒有極值點;(2)證明見解析【解析】

(1)求導可得,再求導可得,則在遞增,則,從而在遞增,即可判斷;(2)轉化問題為存在且,使,可得,由(1)可知,即,則,整理可得,則,設,則可整理為,設,利用導函數可得,即可求證.【詳解】(1)當時,,,所以在遞增,所以,所以在遞增,所以函數沒有極值點.(2)由題,,若存在實數,使直線與函數的圖象交于不同的兩點,即存在且,使.由可得,,由(1)可知,可得.,所以,即,下面證明,只需證明:,令,則證,即.設,那么,所以,所以,即本題考查利用導函數求函數的極值點,考查利用導函數解決雙變量問題,考查運算能力與推理論證能力.18.(1);(2)詳見解析.【解析】

(1)由橢圓離心率、系數關系和已知點坐標構建方程組,求得,代入標準方程中即可;(2)依題意,直線的斜率存在,且不為0,設其為,則直線的方程為,設,,通過聯立直線方程與橢圓方程化簡整理和中點的坐標表示用含k的表達式表示,,進而表示;由韋達定理表示根與系數的關系進而表示用含k的表達式表示,最后做比即得證.【詳解】(1)設橢圓的焦距為,則,即,所以.依題意,,即,解得,所以,.所以橢圓的標準方程為.(2)證明:依題意,直線的斜率存在,且不為0,設其為,則直線的方程為,設,.與橢圓聯立整理得,故所以,,所以.又,所以為定值,得證.本題考查由離心率求橢圓的標準方程,還考查了橢圓中的定值問題,屬于較難題.19.(Ⅰ)見解析(Ⅱ)見解析【解析】

(Ⅰ)求導得到,討論,,三種情況得到單調區間.(Ⅱ)設,要證,即證,,設,根據函數單調性得到證明.【詳解】(Ⅰ),令,,(1)當,即時,,,在上單調遞增;(2)當,即時,設的兩根為(),,①若,,時,,所以在和上單調遞增,時,,所以在上單調遞減,②若,,時,,所以在上單調遞減,時,,所以在上單調遞增.綜上,當時,在上單調遞增;當時,在和上單調遞增,在上單調遞減;當時,在上單調遞減,在上單調遞增.(Ⅱ)不妨設,要證,即證,即證,由(Ⅰ)可知,,,可得,,所以有,令,,所以在單調遞增,所以,因為,所以,所以.本題考查了函數單調性,證明不等式,意在考查學生的分類討論能力和計算能力.20.(1);(2).【解析】

(1)將代入函數的解析式,將函數的及解析式變形為分段函數,利用二次函數的基本性質可求得函數的值域;(2)由參變量分離法得出在區間內有解,分和討論,求得函數的最大值,即可得出實數的取值范圍.【詳解】(1)當時,.當時,;當時,.函數的值域為;(2)不等式等價于,即在區間內有解當時,,此時,,則;當時,,函數在區間上單調遞增,當時,,則.綜上,實數的取值范圍是.本題主要考查含絕對值函數的值域與含絕對值不等式有解的問題,利用絕對值的應用將函數轉化為二次函數,結合二次函數的性質是解決本題的關鍵,考查分類討論思想的應用,屬于中等題.21.(1)43,47;(2)分布列見解析,.【解析】

(1)根據莖葉圖即可得到中位數和眾數;(2)根據數據可得任取一名優秀員工的概率為,故,寫出分布列即可得解.【詳解】(1)中位數為,眾數為.(2)被調查的名工人中優秀員工的數量,任取一名優秀員工的概率為,故,,,的分布列如下:故此題考查根據莖葉圖求眾數和中位數,求離散型隨機變量分布列,根據分布列求解期望,關鍵在于準確求解概率,若能準確識別二項分布對于解題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論