2022年寧夏銀川二十四中高三壓軸卷數學試卷含解析_第1頁
2022年寧夏銀川二十四中高三壓軸卷數學試卷含解析_第2頁
2022年寧夏銀川二十四中高三壓軸卷數學試卷含解析_第3頁
2022年寧夏銀川二十四中高三壓軸卷數學試卷含解析_第4頁
2022年寧夏銀川二十四中高三壓軸卷數學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.為得到y=sin(2x-πA.向左平移π3個單位B.向左平移πC.向右平移π3個單位D.向右平移π2.已知函數是上的偶函數,且當時,函數是單調遞減函數,則,,的大小關系是()A. B.C. D.3.若為過橢圓中心的弦,為橢圓的焦點,則△面積的最大值為()A.20 B.30 C.50 D.604.集合,,則()A. B. C. D.5.已知等比數列滿足,,等差數列中,為數列的前項和,則()A.36 B.72 C. D.6.已知,則的大小關系為A. B. C. D.7.平行四邊形中,已知,,點、分別滿足,,且,則向量在上的投影為()A.2 B. C. D.8.設平面與平面相交于直線,直線在平面內,直線在平面內,且則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分不必要條件9.已知拋物線上的點到其焦點的距離比點到軸的距離大,則拋物線的標準方程為()A. B. C. D.10.如圖所示,為了測量、兩座島嶼間的距離,小船從初始位置出發,已知在的北偏西的方向上,在的北偏東的方向上,現在船往東開2百海里到達處,此時測得在的北偏西的方向上,再開回處,由向西開百海里到達處,測得在的北偏東的方向上,則、兩座島嶼間的距離為()A.3 B. C.4 D.11.已知雙曲線(a>0,b>0)的右焦點為F,若過點F且傾斜角為60°的直線l與雙曲線的右支有且只有一個交點,則此雙曲線的離心率e的取值范圍是()A. B.(1,2), C. D.12.設正項等比數列的前n項和為,若,,則公比()A. B.4 C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.某高中共有1800人,其中高一、高二、高三年級的人數依次成等差數列,現用分層抽樣的方法從中抽取60人,那么高二年級被抽取的人數為________.14.一個四面體的頂點在空間直角坐標系中的坐標分別是,,,,則該四面體的外接球的體積為__________.15.函數在區間(-∞,1)上遞增,則實數a的取值范圍是____16.的展開式中,的系數是__________.(用數字填寫答案)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設拋物線的焦點為,準線為,為過焦點且垂直于軸的拋物線的弦,已知以為直徑的圓經過點.(1)求的值及該圓的方程;(2)設為上任意一點,過點作的切線,切點為,證明:.18.(12分)已知△ABC的兩個頂點A,B的坐標分別為(,0),(,0),圓E是△ABC的內切圓,在邊AC,BC,AB上的切點分別為P,Q,R,|CP|=2,動點C的軌跡為曲線G.(1)求曲線G的方程;(2)設直線l與曲線G交于M,N兩點,點D在曲線G上,是坐標原點,判斷四邊形OMDN的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.19.(12分)在中,內角所對的邊分別為,已知,且.(I)求角的大小;(Ⅱ)若,求面積的取值范圍.20.(12分)某機構組織的家庭教育活動上有一個游戲,每次由一個小孩與其一位家長參與,測試家長對小孩飲食習慣的了解程度.在每一輪游戲中,主持人給出A,B,C,D四種食物,要求小孩根據自己的喜愛程度對其排序,然后由家長猜測小孩的排序結果.設小孩對四種食物排除的序號依次為xAxBxCxD,家長猜測的序號依次為yAyByCyD,其中xAxBxCxD和yAyByCyD都是1,2,3,4四個數字的一種排列.定義隨機變量X=(xA﹣yA)2+(xB﹣yB)2+(xC﹣yC)2+(xD﹣yD)2,用X來衡量家長對小孩飲食習慣的了解程度.(1)若參與游戲的家長對小孩的飲食習慣完全不了解.(ⅰ)求他們在一輪游戲中,對四種食物排出的序號完全不同的概率;(ⅱ)求X的分布列(簡要說明方法,不用寫出詳細計算過程);(2)若有一組小孩和家長進行來三輪游戲,三輪的結果都滿足X<4,請判斷這位家長對小孩飲食習慣是否了解,說明理由.21.(12分)在極坐標系中,曲線的極坐標方程為(1)求曲線與極軸所在直線圍成圖形的面積;(2)設曲線與曲線交于,兩點,求.22.(10分)某職稱晉級評定機構對參加某次專業技術考試的100人的成績進行了統計,繪制了頻率分布直方圖(如圖所示),規定80分及以上者晉級成功,否則晉級失敗.晉級成功晉級失敗合計男16女50合計(1)求圖中的值;(2)根據已知條件完成下面列聯表,并判斷能否有的把握認為“晉級成功”與性別有關?(3)將頻率視為概率,從本次考試的所有人員中,隨機抽取4人進行約談,記這4人中晉級失敗的人數為,求的分布列與數學期望.(參考公式:,其中)0.400.250.150.100.050.0250.7801.3232.0722.7063.8415.024

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】試題分析:因為,所以為得到y=sin(2x-π3)的圖象,只需要將考點:三角函數的圖像變換.2.D【解析】

利用對數函數的單調性可得,再根據的單調性和奇偶性可得正確的選項.【詳解】因為,,故.又,故.因為當時,函數是單調遞減函數,所以.因為為偶函數,故,所以.故選:D.【點睛】本題考查抽象函數的奇偶性、單調性以及對數函數的單調性在大小比較中的應用,比較大小時注意選擇合適的中間數來傳遞不等關系,本題屬于中檔題.3.D【解析】

先設A點的坐標為,根據對稱性可得,在表示出面積,由圖象遏制,當點A在橢圓的頂點時,此時面積最大,再結合橢圓的標準方程,即可求解.【詳解】由題意,設A點的坐標為,根據對稱性可得,則的面積為,當最大時,的面積最大,由圖象可知,當點A在橢圓的上下頂點時,此時的面積最大,又由,可得橢圓的上下頂點坐標為,所以的面積的最大值為.故選:D.【點睛】本題主要考查了橢圓的標準方程及簡單的幾何性質,以及三角形面積公式的應用,著重考查了數形結合思想,以及化歸與轉化思想的應用.4.A【解析】

解一元二次不等式化簡集合A,再根據對數的真數大于零化簡集合B,求交集運算即可.【詳解】由可得,所以,由可得,所以,所以,故選A.【點睛】本題主要考查了集合的交集運算,涉及一元二次不等式解法及對數的概念,屬于中檔題.5.A【解析】

根據是與的等比中項,可求得,再利用等差數列求和公式即可得到.【詳解】等比數列滿足,,所以,又,所以,由等差數列的性質可得.故選:A【點睛】本題主要考查的是等比數列的性質,考查等差數列的求和公式,考查學生的計算能力,是中檔題.6.D【解析】

分析:由題意結合對數的性質,對數函數的單調性和指數的性質整理計算即可確定a,b,c的大小關系.詳解:由題意可知:,即,,即,,即,綜上可得:.本題選擇D選項.點睛:對于指數冪的大小的比較,我們通常都是運用指數函數的單調性,但很多時候,因冪的底數或指數不相同,不能直接利用函數的單調性進行比較.這就必須掌握一些特殊方法.在進行指數冪的大小比較時,若底數不同,則首先考慮將其轉化成同底數,然后再根據指數函數的單調性進行判斷.對于不同底而同指數的指數冪的大小的比較,利用圖象法求解,既快捷,又準確.7.C【解析】

將用向量和表示,代入可求出,再利用投影公式可得答案.【詳解】解:,得,則向量在上的投影為.故選:C.【點睛】本題考查向量的幾何意義,考查向量的線性運算,將用向量和表示是關鍵,是基礎題.8.A【解析】

試題分析:α⊥β,b⊥m又直線a在平面α內,所以a⊥b,但直線不一定相交,所以“α⊥β”是“a⊥b”的充分不必要條件,故選A.考點:充分條件、必要條件.9.B【解析】

由拋物線的定義轉化,列出方程求出p,即可得到拋物線方程.【詳解】由拋物線y2=2px(p>0)上的點M到其焦點F的距離比點M到y軸的距離大,根據拋物線的定義可得,,所以拋物線的標準方程為:y2=2x.故選B.【點睛】本題考查了拋物線的簡單性質的應用,拋物線方程的求法,屬于基礎題.10.B【解析】

先根據角度分析出的大小,然后根據角度關系得到的長度,再根據正弦定理計算出的長度,最后利用余弦定理求解出的長度即可.【詳解】由題意可知:,所以,,所以,所以,又因為,所以,所以.故選:B.【點睛】本題考查解三角形中的角度問題,難度一般.理解方向角的概念以及活用正、余弦定理是解答問題的關鍵.11.A【解析】

若過點且傾斜角為的直線與雙曲線的右支有且只有一個交點,則該直線的斜率的絕對值小于等于漸近線的斜率.根據這個結論可以求出雙曲線離心率的取值范圍.【詳解】已知雙曲線的右焦點為,若過點且傾斜角為的直線與雙曲線的右支有且只有一個交點,則該直線的斜率的絕對值小于等于漸近線的斜率,,離心率,,故選:.【點睛】本題考查雙曲線的性質及其應用,解題時要注意挖掘隱含條件.12.D【解析】

由得,又,兩式相除即可解出.【詳解】解:由得,又,∴,∴,或,又正項等比數列得,∴,故選:D.【點睛】本題主要考查等比數列的性質的應用,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由三個年級人數成等差數列和總人數可求得高二年級共有人,根據抽樣比可求得結果.【詳解】設高一、高二、高三人數分別為,則且,解得:,用分層抽樣的方法抽取人,那么高二年級被抽取的人數為人.故答案為:.【點睛】本題考查分層抽樣問題的求解,涉及到等差數列的相關知識,屬于基礎題.14.【解析】

將四面體補充為長寬高分別為的長方體,體對角線即為外接球的直徑,從而得解.【詳解】采用補體法,由空間點坐標可知,該四面體的四個頂點在一個長方體上,該長方體的長寬高分別為,長方體的外接球即為該四面體的外接球,外接球的直徑即為長方體的體對角線,所以球半徑為,體積為.【點睛】本題主要考查了四面體外接球的常用求法:補體法,通過補體得到長方體的外接球從而得解,屬于基礎題.15.【解析】

根據復合函數單調性同增異減,結合二次函數的性質、對數型函數的定義域列不等式組,解不等式求得的取值范圍.【詳解】由二次函數的性質和復合函數的單調性可得解得.故答案為:【點睛】本小題主要考查根據對數型復合函數的單調性求參數的取值范圍,屬于基礎題.16.【解析】

根據組合的知識,結合組合數的公式,可得結果.【詳解】由題可知:項來源可以是:(1)取1個,4個(2)取2個,3個的系數為:故答案為:【點睛】本題主要考查組合的知識,熟悉二項式定理展開式中每一項的來源,實質上每個因式中各取一項的乘積,轉化為組合的知識,屬中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),圓的方程為:.(2)答案見解析【解析】

(1)根據題意,可知點的坐標為,即可求出的值,即可求出該圓的方程;(2)由題易知,直線的斜率存在且不為0,設的方程為,與拋物線聯立方程組,根據,求得,化簡解得,進而求得點的坐標為,分別求出,,利用向量的數量積為0,即可證出.【詳解】解:(1)易知點的坐標為,所以,解得.又圓的圓心為,所以圓的方程為.(2)證明易知,直線的斜率存在且不為0,設的方程為,代入的方程,得.令,得,所以,解得.將代入的方程,得,即點的坐標為.所以,,.故.【點睛】本題考查拋物線的標準方程和圓的方程,考查直線和拋物線的位置關系,利用聯立方程組、求交點坐標以及向量的數量積,考查解題能力和計算能力.18.(1).(2)四邊形OMDN的面積是定值,其定值為.【解析】

(1)根據三角形內切圓的性質證得,由此判斷出點的軌跡為橢圓,并由此求得曲線的方程.(2)將直線的斜率分成不存在或存在兩種情況,求出平行四邊形的面積,兩種情況下四邊形的面積都為,由此證得四邊形的面積為定值.【詳解】(1)因為圓E為△ABC的內切圓,所以|CA|+|CB|=|CP|+|CQ|+|PA|+|QB|=2|CP|+|AR|+|BR|=2|CP|+|AB|=4>|AB|所以點C的軌跡為以點A和點B為焦點的橢圓(點不在軸上),所以c,a=2,b,所以曲線G的方程為,(2)因為,故四邊形為平行四邊形.當直線l的斜率不存在時,則四邊形為為菱形,故直線MN的方程為x=﹣1或x=1,此時可求得四邊形OMDN的面積為.當直線l的斜率存在時,設直線l方程是y=kx+m,代入到,得(1+2k2)x2+4kmx+2m2﹣4=0,∴x1+x2,x1x2,△=8(4k2+2﹣m2)>0,∴y1+y2=k(x1+x2)+2m,|MN|點O到直線MN的距離d,由,得xD,yD,∵點D在曲線C上,所以將D點坐標代入橢圓方程得1+2k2=2m2,由題意四邊形OMDN為平行四邊形,∴OMDN的面積為S,由1+2k2=2m2得S,故四邊形OMDN的面積是定值,其定值為.【點睛】本小題主要考查用定義法求軌跡方程,考查橢圓中四邊形面積的計算,考查橢圓中的定值問題,考查運算求解能力,屬于中檔題.19.(Ⅰ);(Ⅱ)【解析】

(I)根據,利用二倍角公式得到,再由輔助角公式得到,然后根據正弦函數的性質求解.(Ⅱ)根據(I)由余弦定理得到,再利用重要不等式得到,然后由求解.【詳解】(I)因為,所以,,,或,或,因為,所以所以;(Ⅱ)由余弦定理得:,所以,所以,當且僅當取等號,又因為,所以,所以【點睛】本題主要考查二倍角公式,輔助角公式以及余弦定理,還考查了運算求解的能力,屬于中檔題.20.(1)(ⅰ)(ⅱ)分布表見解析;(2)理由見解析【解析】

(1)(i)若家長對小孩子的飲食習慣完全不了解,則家長對小孩的排序是隨意猜測的,家長的排序有種等可能結果,利用列舉法求出其中滿足“家長的排序與對應位置的數字完全不同”的情況有9種,由此能求出他們在一輪游戲中,對四種食物排出的序號完全不同的概率.

(ii)根據(i)的分析,同樣只考慮小孩排序為1234的情況,家長的排序一共有24種情況,由此能求出X的分布列.

(2)假設家長對小孩的飲食習慣完全不了解,在一輪游戲中,P(X<4)=P(X=0)+P(X=2)=,三輪游戲結果都滿足“X<4”的概率為,這個結果發生的可能性很小,從而這位家長對小孩飲食習慣比較了解.【詳解】(1)(i)若家長對小孩子的飲食習慣完全不了解,則家長對小孩的排序是隨意猜測的,先考慮小孩的排序為xA,xB,xC,xD為1234的情況,家長的排序有=24種等可能結果,其中滿足“家長的排序與對應位置的數字完全不同”的情況有9種,分別為:2143,2341,2413,3142,3412,3421,4123,4312,4321,∴家長的排序與對應位置的數字完全不同的概率P=.基小孩對四種食物的排序是其他情況,只需將角標A,B,C,D按照小孩的順序調整即可,假設小孩的排序xA,xB,xC,xD為1423的情況,四種食物按1234的排列為ACDB,再研究yAyByCyD的情況即可,其實這樣處理后與第一種情況的計算結果是一致的,∴他們在一輪游戲中,對四種食物排出的序號完全不同的概率為.(ii)根據(i)的分析,同樣只考慮小孩排序為1234的情況,家長的排序一共有24種情況,列出所有情況,分別計算每種情況下的x的值,X的分布列如下表:X02468101214161820P(2)這位家長對小孩的飲食習慣比較了解.理由如下:假設家長對小孩的飲食習慣完全不了解,由(1)可知,在一輪游戲中,P(X<4)=P(X=0)+P(X=2)=,三輪游戲結果都滿足“X<4”的概率為()3=,這個結果發生的可能性很小,∴這位家長對小孩飲食習慣比較了解.【點睛】本題考查概率的求法,考查古典概型、排列組合、列舉法等基礎知識,考查運算求解能力,是中檔題.21.(1);(2)【解析】

(1)利用互化公式,將曲線的極坐標方程化為直角坐標方程,得出曲線與極軸所在直線圍成的圖形是一個半

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論