2023屆吉林省吉林市豐滿區第五十五中學高三數學第一學期期末質量檢測試題含解析_第1頁
2023屆吉林省吉林市豐滿區第五十五中學高三數學第一學期期末質量檢測試題含解析_第2頁
2023屆吉林省吉林市豐滿區第五十五中學高三數學第一學期期末質量檢測試題含解析_第3頁
2023屆吉林省吉林市豐滿區第五十五中學高三數學第一學期期末質量檢測試題含解析_第4頁
2023屆吉林省吉林市豐滿區第五十五中學高三數學第一學期期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知平面向量,,滿足:,,則的最小值為()A.5 B.6 C.7 D.82.已知的部分圖象如圖所示,則的表達式是()A. B.C. D.3.M、N是曲線y=πsinx與曲線y=πcosx的兩個不同的交點,則|MN|的最小值為()A.π B.π C.π D.2π4.設為虛數單位,則復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.如圖,在三棱錐中,平面,,現從該三棱錐的個表面中任選個,則選取的個表面互相垂直的概率為()A. B. C. D.6.已知復數滿足(是虛數單位),則=()A. B. C. D.7.設等差數列的前n項和為,且,,則()A.9 B.12 C. D.8.設,,是非零向量.若,則()A. B. C. D.9.下列說法正確的是()A.命題“,”的否定形式是“,”B.若平面,,,滿足,則C.隨機變量服從正態分布(),若,則D.設是實數,“”是“”的充分不必要條件10.由實數組成的等比數列{an}的前n項和為Sn,則“a1>0”是“S9>S8”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.已知將函數(,)的圖象向右平移個單位長度后得到函數的圖象,若和的圖象都關于對稱,則下述四個結論:①②③④點為函數的一個對稱中心其中所有正確結論的編號是()A.①②③ B.①③④ C.①②④ D.②③④12.過雙曲線的右焦點F作雙曲線C的一條弦AB,且,若以AB為直徑的圓經過雙曲線C的左頂點,則雙曲線C的離心率為()A. B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知的展開式中項的系數與項的系數分別為135與,則展開式所有項系數之和為______.14.如圖,機器人亮亮沿著單位網格,從地移動到地,每次只移動一個單位長度,則亮亮從移動到最近的走法共有____種.15.的展開式中項的系數為_______.16.已知,則的值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數,是函數的導數.(1)若,證明在區間上沒有零點;(2)在上恒成立,求的取值范圍.18.(12分)已知橢圓的離心率為是橢圓的一個焦點,點,直線的斜率為1.(1)求橢圓的方程;(1)若過點的直線與橢圓交于兩點,線段的中點為,是否存在直線使得?若存在,求出的方程;若不存在,請說明理由.19.(12分)某芯片公司對今年新開發的一批5G手機芯片進行測評,該公司隨機調查了100顆芯片,并將所得統計數據分為五個小組(所調查的芯片得分均在內),得到如圖所示的頻率分布直方圖,其中.(1)求這100顆芯片評測分數的平均數(同一組中的每個數據可用該組區間的中點值代替).(2)芯片公司另選100顆芯片交付給某手機公司進行測試,該手機公司將每顆芯片分別裝在3個工程手機中進行初測。若3個工程手機的評分都達到11萬分,則認定該芯片合格;若3個工程手機中只要有2個評分沒達到11萬分,則認定該芯片不合格;若3個工程手機中僅1個評分沒有達到11萬分,則將該芯片再分別置于另外2個工程手機中進行二測,二測時,2個工程手機的評分都達到11萬分,則認定該芯片合格;2個工程手機中只要有1個評分沒達到11萬分,手機公司將認定該芯片不合格.已知每顆芯片在各次置于工程手機中的得分相互獨立,并且芯片公司對芯片的評分方法及標準與手機公司對芯片的評分方法及標準都一致(以頻率作為概率).每顆芯片置于一個工程手機中的測試費用均為300元,每顆芯片若被認定為合格或不合格,將不再進行后續測試,現手機公司測試部門預算的測試經費為10萬元,試問預算經費是否足夠測試完這100顆芯片?請說明理由.20.(12分)已知函數,函數.(Ⅰ)判斷函數的單調性;(Ⅱ)若時,對任意,不等式恒成立,求實數的最小值.21.(12分)若關于的方程的兩根都大于2,求實數的取值范圍.22.(10分)近年空氣質量逐步惡化,霧霾天氣現象出現增多,大氣污染危害加重.大氣污染可引起心悸.呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關,在某醫院隨機的對入院人進行了問卷調查得到了如下的列聯表:患心肺疾病不患心肺疾病合計男女合計已知在全部人中隨機抽取人,抽到患心肺疾病的人的概率為.(1)請將上面的列聯表補充完整,并判斷是否有的把握認為患心肺疾病與性別有關?請說明你的理由;(2)已知在不患心肺疾病的位男性中,有位從事的是戶外作業的工作.為了指導市民盡可能地減少因霧霾天氣對身體的傷害,現從不患心肺疾病的位男性中,選出人進行問卷調查,求所選的人中至少有一位從事的是戶外作業的概率.下面的臨界值表供參考:(參考公式,其中)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

建立平面直角坐標系,將已知條件轉化為所設未知量的關系式,再將的最小值轉化為用該關系式表達的算式,利用基本不等式求得最小值.【詳解】建立平面直角坐標系如下圖所示,設,,且,由于,所以..所以,即..當且僅當時取得最小值,此時由得,當時,有最小值為,即,,解得.所以當且僅當時有最小值為.故選:B【點睛】本小題主要考查向量的位置關系、向量的模,考查基本不等式的運用,考查數形結合的數學思想方法,屬于難題.2、D【解析】

由圖象求出以及函數的最小正周期的值,利用周期公式可求得的值,然后將點的坐標代入函數的解析式,結合的取值范圍求出的值,由此可得出函數的解析式.【詳解】由圖象可得,函數的最小正周期為,.將點代入函數的解析式得,得,,,則,,因此,.故選:D.【點睛】本題考查利用圖象求三角函數解析式,考查分析問題和解決問題的能力,屬于中等題.3、C【解析】

兩函數的圖象如圖所示,則圖中|MN|最小,設M(x1,y1),N(x2,y2),則x1=,x2=π,|x1-x2|=π,|y1-y2|=|πsinx1-πcosx2|=π+π=π,∴|MN|==π.故選C.4、A【解析】

利用復數的除法運算化簡,求得對應的坐標,由此判斷對應點所在象限.【詳解】,對應的點的坐標為,位于第一象限.故選:A.【點睛】本小題主要考查復數除法運算,考查復數對應點所在象限,屬于基礎題.5、A【解析】

根據線面垂直得面面垂直,已知平面,由,可得平面,這樣可確定垂直平面的對數,再求出四個面中任選2個的方法數,從而可計算概率.【詳解】由已知平面,,可得,從該三棱錐的個面中任選個面共有種不同的選法,而選取的個表面互相垂直的有種情況,故所求事件的概率為.故選:A.【點睛】本題考查古典概型概率,解題關鍵是求出基本事件的個數.6、A【解析】

把已知等式變形,再由復數代數形式的乘除運算化簡得答案.【詳解】解:由,得,.故選.【點睛】本題考查復數代數形式的乘除運算,考查復數的基本概念,是基礎題.7、A【解析】

由,可得以及,而,代入即可得到答案.【詳解】設公差為d,則解得,所以.故選:A.【點睛】本題考查等差數列基本量的計算,考查學生運算求解能力,是一道基礎題.8、D【解析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點:平面向量數量積.【思路點睛】幾何圖形中向量的數量積問題是近幾年高考的又一熱點,作為一類既能考查向量的線性運算、坐標運算、數量積及平面幾何知識,又能考查學生的數形結合能力及轉化與化歸能力的問題,實有其合理之處.解決此類問題的常用方法是:①利用已知條件,結合平面幾何知識及向量數量積的基本概念直接求解(較易);②將條件通過向量的線性運算進行轉化,再利用①求解(較難);③建系,借助向量的坐標運算,此法對解含垂直關系的問題往往有很好效果.9、D【解析】

由特稱命題的否定是全稱命題可判斷選項A;可能相交,可判斷B選項;利用正態分布的性質可判斷選項C;或,利用集合間的包含關系可判斷選項D.【詳解】命題“,”的否定形式是“,”,故A錯誤;,,則可能相交,故B錯誤;若,則,所以,故,所以C錯誤;由,得或,故“”是“”的充分不必要條件,D正確.故選:D.【點睛】本題考查命題的真假判斷,涉及到特稱命題的否定、面面相關的命題、正態分布、充分條件與必要條件等,是一道容易題.10、C【解析】

根據等比數列的性質以及充分條件和必要條件的定義進行判斷即可.【詳解】解:若{an}是等比數列,則,

若,則,即成立,

若成立,則,即,

故“”是“”的充要條件,

故選:C.【點睛】本題主要考查充分條件和必要條件的判斷,利用等比數列的通項公式是解決本題的關鍵.11、B【解析】

首先根據三角函數的平移規則表示出,再根據對稱性求出、,即可求出的解析式,從而驗證可得;【詳解】解:由題意可得,又∵和的圖象都關于對稱,∴,∴解得,即,又∵,∴,,∴,∴,,∴①③④正確,②錯誤.故選:B【點睛】本題考查三角函數的性質的應用,三角函數的變換規則,屬于基礎題.12、C【解析】

由得F是弦AB的中點.進而得AB垂直于x軸,得,再結合關系求解即可【詳解】因為,所以F是弦AB的中點.且AB垂直于x軸.因為以AB為直徑的圓經過雙曲線C的左頂點,所以,即,則,故.故選:C【點睛】本題是對雙曲線的漸近線以及離心率的綜合考查,是考查基本知識,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、64【解析】

由題意先求得的值,再令求出展開式中所有項的系數和.【詳解】的展開式中項的系數與項的系數分別為135與,,,由兩式可組成方程組,解得或,令,求得展開式中所有的系數之和為.故答案為:64【點睛】本題考查了二項式定理,考查了賦值法求多項式展開式的系數和,屬于基礎題.14、【解析】

分三步來考查,先從到,再從到,最后從到,分別計算出三個步驟中對應的走法種數,然后利用分步乘法計數原理可得出結果.【詳解】分三步來考查:①從到,則亮亮要移動兩步,一步是向右移動一個單位,一步是向上移動一個單位,此時有種走法;②從到,則亮亮要移動六步,其中三步是向右移動一個單位,三步是向上移動一個單位,此時有種走法;③從到,由①可知有種走法.由分步乘法計數原理可知,共有種不同的走法.故答案為:.【點睛】本題考查格點問題的處理,考查分步乘法計數原理和組合計數原理的應用,屬于中等題.15、40【解析】

根據二項定理展開式,求得r的值,進而求得系數.【詳解】根據二項定理展開式的通項式得所以,解得所以系數【點睛】本題考查了二項式定理的簡單應用,屬于基礎題.16、【解析】

先求,再根據的范圍求出即可.【詳解】由題可知,故.故答案為:.【點睛】本題考查分段函數函數值的求解,涉及對數的運算,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】

(1)先利用導數的四則運算法則和導數公式求出,再由函數的導數可知,函數在上單調遞增,在上單調遞減,而,,可知在區間上恒成立,即在區間上沒有零點;(2)由題意可將轉化為,構造函數,利用導數討論研究其在上的單調性,由,即可求出的取值范圍.【詳解】(1)若,則,,設,則,,,故函數是奇函數.當時,,,這時,又函數是奇函數,所以當時,.綜上,當時,函數單調遞增;當時,函數單調遞減.又,,故在區間上恒成立,所以在區間上沒有零點.(2),由,所以恒成立,若,則,設,.故當時,,又,所以當時,,滿足題意;當時,有,與條件矛盾,舍去;當時,令,則,又,故在區間上有無窮多個零點,設最小的零點為,則當時,,因此在上單調遞增.,所以.于是,當時,,得,與條件矛盾.故的取值范圍是.【點睛】本題主要考查導數的四則運算法則和導數公式的應用,以及利用導數研究函數的單調性和最值,涉及分類討論思想和放縮法的應用,難度較大,意在考查學生的數學建模能力,數學運算能力和邏輯推理能力,屬于較難題.18、(1)(1)不存在,理由見解析【解析】

(1)利用離心率和過點,列出等式,即得解(1)設的方程為,與橢圓聯立,利用韋達定理表示中點N的坐標,用點坐標表示,利用韋達關系代入,得到關于k的等式,即可得解.【詳解】(1)由題意,可得解得則,故橢圓的方程為.(1)當直線的斜率不存在時,,不符合題意.當的斜率存在時,設的方程為,聯立得,設,則,,,即.設,則,,,則,即,整理得,此方程無解,故的方程不存在.綜上所述,不存在直線使得.【點睛】本題考查了直線和橢圓綜合,考查了弦長和中點問題,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于較難題.19、(1)(2)預算經費不夠測試完這100顆芯片,理由見解析【解析】

(1)先求出,再利用頻率分布直方圖的平均數公式求這100顆芯片評測分數的平均數;(2)先求出每顆芯片的測試費用的數學期望,再比較得解.【詳解】(1)依題意,,故.又因為.所以,所求平均數為(萬分)(2)由題意可知,手機公司抽取一顆芯片置于一個工程機中進行檢測評分達到11萬分的概率.設每顆芯片的測試費用為X元,則X的可能取值為600,900,1200,1500,,,故每顆芯片的測試費用的數學期望為(元),因為,所以顯然預算經費不夠測試完這100顆芯片.【點睛】本題主要考查頻率分布直方圖的平均數的計算,考查離散型隨機變量的數學期望的計算,意在考查學生對這些知識的理解掌握水平.20、(1)故函數在上單調遞增,在上單調遞減;(2).【解析】試題分析:(Ⅰ)根據題意得到的解析式和定義域,求導后根據導函數的符號判斷單調性.(Ⅱ)分析題意可得對任意,恒成立,構造函數,則有對任意,恒成立,然后通過求函數的最值可得所求.試題解析:(I)由題意得,,∴.當時,,函數在上單調遞增;當時,令,解得;令,解得.故函數在上單調遞增,在上單調遞減.綜上,當時,函數在上單調遞增;當時,函數在上單調遞增,在上單調遞減.(II)由題意知.,當時,函數單調遞增.不妨設,又函數單調遞減,所以原問題等價于:當

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論